IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v276y2019i3p826-839.html
   My bibliography  Save this article

The periodic rural postman problem with irregular services on mixed graphs

Author

Listed:
  • Benavent, Enrique
  • Corberán, Ángel
  • Laganà, Demetrio
  • Vocaturo, Francesca

Abstract

In this paper, we deal with an extension of the rural postman problem in which some links of a mixed graph must be traversed a given number of times over a time horizon. These links represent entities that must be serviced a specified number of times in some subsets of days (or periods) of the time horizon. The aim is to design a set of minimum-cost tours, one for each day/period of the time horizon, that satisfy the service requirements. We refer to this problem as the periodic rural postman problem with irregular services (PRPP–IS). Some practical applications of the problem can be found in road maintenance operations and road network surveillance, for example. In order to solve the PRPP–IS, we propose a mathematical model and a branch-and-cut algorithm. As far as we know, this is the first exact method devised for a periodic arc routing problem. In the solution framework, constraints ensuring connectivity and other valid inequalities are identified by using specific separation procedures. Most valid inequalities consider the particular nature of the PRPP–IS. We show the effectiveness of the solution approach through an extensive experimental phase.

Suggested Citation

  • Benavent, Enrique & Corberán, Ángel & Laganà, Demetrio & Vocaturo, Francesca, 2019. "The periodic rural postman problem with irregular services on mixed graphs," European Journal of Operational Research, Elsevier, vol. 276(3), pages 826-839.
  • Handle: RePEc:eee:ejores:v:276:y:2019:i:3:p:826-839
    DOI: 10.1016/j.ejor.2019.01.056
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719300918
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.01.056?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lacomme, Philippe & Prins, Christian & Ramdane-Cherif, Wahiba, 2005. "Evolutionary algorithms for periodic arc routing problems," European Journal of Operational Research, Elsevier, vol. 165(2), pages 535-553, September.
    2. José Manuel Belenguer & Enrique Benavent & Antonio Martínez & Christian Prins & Caroline Prodhon & Juan G. Villegas, 2016. "A Branch-and-Cut Algorithm for the Single Truck and Trailer Routing Problem with Satellite Depots," Transportation Science, INFORMS, vol. 50(2), pages 735-749, May.
    3. Ciancio, Claudio & Laganá, Demetrio & Vocaturo, Francesca, 2018. "Branch-price-and-cut for the Mixed Capacitated General Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 267(1), pages 187-199.
    4. Francis, Peter & Smilowitz, Karen, 2006. "Modeling techniques for periodic vehicle routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 40(10), pages 872-884, December.
    5. Tagmouti, Mariam & Gendreau, Michel & Potvin, Jean-Yves, 2007. "Arc routing problems with time-dependent service costs," European Journal of Operational Research, Elsevier, vol. 181(1), pages 30-39, August.
    6. Chu, Feng & Labadi, Nacima & Prins, Christian, 2006. "A Scatter Search for the periodic capacitated arc routing problem," European Journal of Operational Research, Elsevier, vol. 169(2), pages 586-605, March.
    7. Peter Francis & Karen Smilowitz & Michal Tzur, 2006. "The Period Vehicle Routing Problem with Service Choice," Transportation Science, INFORMS, vol. 40(4), pages 439-454, November.
    8. Archetti, Claudia & Bertazzi, Luca & Laganà, Demetrio & Vocaturo, Francesca, 2017. "The Undirected Capacitated General Routing Problem with Profits," European Journal of Operational Research, Elsevier, vol. 257(3), pages 822-833.
    9. Braekers, Kris & Caris, An & Janssens, Gerrit K., 2014. "Exact and meta-heuristic approach for a general heterogeneous dial-a-ride problem with multiple depots," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 166-186.
    10. Corberan, A. & Sanchis, J. M., 1994. "A polyhedral approach to the rural postman problem," European Journal of Operational Research, Elsevier, vol. 79(1), pages 95-114, November.
    11. Irnich, Stefan & Laganà, Demetrio & Schlebusch, Claudia & Vocaturo, Francesca, 2015. "Two-phase branch-and-cut for the mixed capacitated general routing problem," European Journal of Operational Research, Elsevier, vol. 243(1), pages 17-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benavent, Enrique & Corberán, Ángel & Laganà, Demetrio & Vocaturo, Francesca, 2023. "A two-phase hybrid algorithm for the periodic rural postman problem with irregular services on mixed graphs," European Journal of Operational Research, Elsevier, vol. 307(1), pages 64-81.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pourhejazy, Pourya & Zhang, Dali & Zhu, Qinghua & Wei, Fangfang & Song, Shuang, 2021. "Integrated E-waste transportation using capacitated general routing problem with time-window," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    2. Chen, Yuning & Hao, Jin-Kao, 2018. "Two phased hybrid local search for the periodic capacitated arc routing problem," European Journal of Operational Research, Elsevier, vol. 264(1), pages 55-65.
    3. Ciancio, Claudio & Laganá, Demetrio & Vocaturo, Francesca, 2018. "Branch-price-and-cut for the Mixed Capacitated General Routing Problem with Time Windows," European Journal of Operational Research, Elsevier, vol. 267(1), pages 187-199.
    4. Thibaut Vidal, 2017. "Node, Edge, Arc Routing and Turn Penalties: Multiple Problems—One Neighborhood Extension," Operations Research, INFORMS, vol. 65(4), pages 992-1010, August.
    5. Meyer, Anne & Amberg, Boris, 2018. "Transport concept selection considering supplier milk runs – An integrated model and a case study from the automotive industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 147-169.
    6. Nasr Al-Hinai & Chefi Triki, 2020. "A two-level evolutionary algorithm for solving the petrol station replenishment problem with periodicity constraints and service choice," Annals of Operations Research, Springer, vol. 286(1), pages 325-350, March.
    7. Davis, Lauren B. & Sengul, Irem & Ivy, Julie S. & Brock, Luther G. & Miles, Lastella, 2014. "Scheduling food bank collections and deliveries to ensure food safety and improve access," Socio-Economic Planning Sciences, Elsevier, vol. 48(3), pages 175-188.
    8. Chefi Triki, 2017. "Solving the Periodic Edge Routing Problem in the Municipal Waste Collection," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(03), pages 1-13, June.
    9. Zhen, Lu & Gao, Jiajing & Tan, Zheyi & Laporte, Gilbert & Baldacci, Roberto, 2023. "Territorial design for customers with demand frequency," European Journal of Operational Research, Elsevier, vol. 309(1), pages 82-101.
    10. Ansari, Sina & Başdere, Mehmet & Li, Xiaopeng & Ouyang, Yanfeng & Smilowitz, Karen, 2018. "Advancements in continuous approximation models for logistics and transportation systems: 1996–2016," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 229-252.
    11. Fung, Richard Y.K. & Liu, Ran & Jiang, Zhibin, 2013. "A memetic algorithm for the open capacitated arc routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 50(C), pages 53-67.
    12. Ann-Kathrin Rothenbächer, 2017. "Branch-and-Price-and-Cut for the Periodic Vehicle Routing Problem with Flexible Schedule Structures," Working Papers 1714, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    13. Ali Diabat & Tarek Abdallah & Tung Le, 2016. "A hybrid tabu search based heuristic for the periodic distribution inventory problem with perishable goods," Annals of Operations Research, Springer, vol. 242(2), pages 373-398, July.
    14. Liu, Ran & Xie, Xiaolan & Garaix, Thierry, 2014. "Hybridization of tabu search with feasible and infeasible local searches for periodic home health care logistics," Omega, Elsevier, vol. 47(C), pages 17-32.
    15. Zamorano, Emilio & Stolletz, Raik, 2017. "Branch-and-price approaches for the Multiperiod Technician Routing and Scheduling Problem," European Journal of Operational Research, Elsevier, vol. 257(1), pages 55-68.
    16. Thibaut Vidal & Teodor Gabriel Crainic & Michel Gendreau & Nadia Lahrichi & Walter Rei, 2012. "A Hybrid Genetic Algorithm for Multidepot and Periodic Vehicle Routing Problems," Operations Research, INFORMS, vol. 60(3), pages 611-624, June.
    17. Prodhon, Caroline, 2011. "A hybrid evolutionary algorithm for the periodic location-routing problem," European Journal of Operational Research, Elsevier, vol. 210(2), pages 204-212, April.
    18. Rodríguez-Martín, Inmaculada & Yaman, Hande, 2022. "Periodic Vehicle Routing Problem with Driver Consistency and service time optimization," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 468-484.
    19. Hemmelmayr, Vera C., 2015. "Sequential and parallel large neighborhood search algorithms for the periodic location routing problem," European Journal of Operational Research, Elsevier, vol. 243(1), pages 52-60.
    20. Attila A. Kovacs & Bruce L. Golden & Richard F. Hartl & Sophie N. Parragh, 2015. "The Generalized Consistent Vehicle Routing Problem," Transportation Science, INFORMS, vol. 49(4), pages 796-816, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:276:y:2019:i:3:p:826-839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.