IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v264y2018i2p774-796.html
   My bibliography  Save this article

Wildfire fuel management: Network-based models and optimization of prescribed burning

Author

Listed:
  • Matsypura, Dmytro
  • Prokopyev, Oleg A.
  • Zahar, Aizat

Abstract

Wildfires are a common phenomenon on most continents. They have occurred for an estimated 60 million years and are part of a regular climatic cycle. Nevertheless, wildfires represent a real and continuing problem that can have a major impact on people, wildlife and the environment. The intensity and severity of wildfires can be reduced through fuel management activities. The most common and effective fuel management activity is prescribed burning. We propose a multi-period optimization framework based on mixed integer programming (MIP) techniques to determine the optimal spatial allocation of prescribed burning activities over a finite planning horizon. In contrast to the existing fuel management optimization literature, we model fuel accumulation with Olson’s equation. To capture potential fire spread along with irregular landscape connectivity considerations, we use a graph-theoretical approach that allows us to exploit graph connectivity measures (e.g., the number of connected components) as optimization objectives. The resulting mathematical programs can be tackled by general purpose MIP solvers, while for handling larger instances we propose a simple heuristic. Our computational experiments with test instances constructed based on real-life data reveal interesting insights and demonstrate the advantages and limitations of the proposed approaches.

Suggested Citation

  • Matsypura, Dmytro & Prokopyev, Oleg A. & Zahar, Aizat, 2018. "Wildfire fuel management: Network-based models and optimization of prescribed burning," European Journal of Operational Research, Elsevier, vol. 264(2), pages 774-796.
  • Handle: RePEc:eee:ejores:v:264:y:2018:i:2:p:774-796
    DOI: 10.1016/j.ejor.2017.06.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171730591X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.06.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Minas, James P. & Hearne, John W. & Martell, David L., 2014. "A spatial optimisation model for multi-period landscape level fuel management to mitigate wildfire impacts," European Journal of Operational Research, Elsevier, vol. 232(2), pages 412-422.
    2. Elizabeth A. Wilman, 2015. "An economic model of aboriginal fire-stick farming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(1), pages 39-60, January.
    3. Alexander Veremyev & Oleg A. Prokopyev & Eduardo L. Pasiliao, 2014. "An integer programming framework for critical elements detection in graphs," Journal of Combinatorial Optimization, Springer, vol. 28(1), pages 233-273, July.
    4. Martell, David L. & Gunn, Eldon A. & Weintraub, Andres, 1998. "Forest management challenges for operational researchers," European Journal of Operational Research, Elsevier, vol. 104(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bashiri, Mahdi & Nikzad, Erfaneh & Eberhard, Andrew & Hearne, John & Oliveira, Fabricio, 2021. "A two stage stochastic programming for asset protection routing and a solution algorithm based on the Progressive Hedging algorithm," Omega, Elsevier, vol. 104(C).
    2. Pelagie Elimbi Moudio & Cristobal Pais & Zuo-Jun Max Shen, 2021. "Quantifying the impact of ecosystem services for landscape management under wildfire hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 531-560, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mikael Rönnqvist & Sophie D’Amours & Andres Weintraub & Alejandro Jofre & Eldon Gunn & Robert Haight & David Martell & Alan Murray & Carlos Romero, 2015. "Operations Research challenges in forestry: 33 open problems," Annals of Operations Research, Springer, vol. 232(1), pages 11-40, September.
    2. Álvarez-Miranda, Eduardo & Garcia-Gonzalo, Jordi & Ulloa-Fierro, Felipe & Weintraub, Andrés & Barreiro, Susana, 2018. "A multicriteria optimization model for sustainable forest management under climate change uncertainty: An application in Portugal," European Journal of Operational Research, Elsevier, vol. 269(1), pages 79-98.
    3. Kai L. Ross & Sándor F. Tóth & Weikko S. Jaross, 2018. "Forest Harvest Scheduling with Endogenous Road Costs," Interfaces, INFORMS, vol. 48(3), pages 260-270, June.
    4. Araya-Córdova, P.J. & Vásquez, Óscar C., 2018. "The disaster emergency unit scheduling problem to control wildfires," International Journal of Production Economics, Elsevier, vol. 200(C), pages 311-317.
    5. Foad Mahdavi Pajouh, 2020. "Minimum cost edge blocker clique problem," Annals of Operations Research, Springer, vol. 294(1), pages 345-376, November.
    6. Mustapha Ouhimmou & Sophie D'Amours & Robert Beauregard & Daoud Ait-Kadi & Satyaveer Singh Chauhan, 2009. "Optimization Helps Shermag Gain Competitive Edge," Interfaces, INFORMS, vol. 39(4), pages 329-345, August.
    7. Marco Di Summa & Syed Md Omar Faruk, 2023. "Critical node/edge detection problems on trees," 4OR, Springer, vol. 21(3), pages 439-455, September.
    8. Khakzad, Nima, 2021. "Optimal firefighting to prevent domino effects: Methodologies based on dynamic influence diagram and mathematical programming," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    9. Dimopoulou, Maria & Giannikos, Ioannis, 2004. "Towards an integrated framework for forest fire control," European Journal of Operational Research, Elsevier, vol. 152(2), pages 476-486, January.
    10. Amira Dems & Louis-Martin Rousseau & Jean-Marc Frayret, 2015. "Effects of different cut-to-length harvesting structures on the economic value of a wood procurement planning problem," Annals of Operations Research, Springer, vol. 232(1), pages 65-86, September.
    11. Wei, Ningji & Walteros, Jose L., 2022. "Integer programming methods for solving binary interdiction games," European Journal of Operational Research, Elsevier, vol. 302(2), pages 456-469.
    12. Mendes, André Bergsten & e Alvelos, Filipe Pereira, 2023. "Iterated local search for the placement of wildland fire suppression resources," European Journal of Operational Research, Elsevier, vol. 304(3), pages 887-900.
    13. Minas, James P. & Hearne, John W. & Martell, David L., 2014. "A spatial optimisation model for multi-period landscape level fuel management to mitigate wildfire impacts," European Journal of Operational Research, Elsevier, vol. 232(2), pages 412-422.
    14. Zhong, Haonan & Mahdavi Pajouh, Foad & A. Prokopyev, Oleg, 2023. "On designing networks resilient to clique blockers," European Journal of Operational Research, Elsevier, vol. 307(1), pages 20-32.
    15. Nieuwenhuis, Maarten & Tiernan, Dermot, 2005. "The impact of the introduction of sustainable forest management objectives on the optimisation of PC-based forest-level harvest schedules," Forest Policy and Economics, Elsevier, vol. 7(4), pages 689-701, May.
    16. Kıbış, Eyyüb Y. & Büyüktahtakın, İ. Esra, 2017. "Optimizing invasive species management: A mixed-integer linear programming approach," European Journal of Operational Research, Elsevier, vol. 259(1), pages 308-321.
    17. Tiernan, Dermot & Nieuwenhuis, Maarten, 2005. "Financial optimisation of forest-level harvest scheduling in Ireland - A case study," Journal of Forest Economics, Elsevier, vol. 11(1), pages 21-43, June.
    18. Adán Rodríguez-Martínez & Begoña Vitoriano, 2020. "Probability-Based Wildfire Risk Measure for Decision-Making," Mathematics, MDPI, vol. 8(4), pages 1-18, April.
    19. Belavenutti, Pedro & Ager, Alan A. & Day, Michelle A. & Chung, Woodam, 2022. "Designing forest restoration projects to optimize the application of broadcast burning," Ecological Economics, Elsevier, vol. 201(C).
    20. Pascual, Adrián, 2021. "Building Pareto Frontiers under tree-level forest planning using airborne laser scanning, growth models and spatial optimization," Forest Policy and Economics, Elsevier, vol. 128(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:264:y:2018:i:2:p:774-796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.