IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v232y2014i3p572-583.html
   My bibliography  Save this article

Stochastically weighted stochastic dominance concepts with an application in capital budgeting

Author

Listed:
  • Hu, Jian
  • Homem-de-Mello, Tito
  • Mehrotra, Sanjay

Abstract

The problem of comparing random vectors arises in many applications. We propose three new concepts of stochastically weighted dominance for comparing random vectors X and Y. The main idea is to use a random vector V to scalarize X and Y as VTX and VTY, and subsequently use available concepts from stochastic dominance and stochastic optimization for comparison. For the case where the distributions of X, Y and V have finite support, we give (mixed-integer) linear inequalities that can be used for random vector comparison as well as for modeling of optimization problems where one of the random vectors depends on decisions to be optimized. Some advantages of the proposed new concepts are illustrated with the help of a capital budgeting example.

Suggested Citation

  • Hu, Jian & Homem-de-Mello, Tito & Mehrotra, Sanjay, 2014. "Stochastically weighted stochastic dominance concepts with an application in capital budgeting," European Journal of Operational Research, Elsevier, vol. 232(3), pages 572-583.
  • Handle: RePEc:eee:ejores:v:232:y:2014:i:3:p:572-583
    DOI: 10.1016/j.ejor.2013.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171300653X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2013.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jian Hu & Tito Homem-de-Mello & Sanjay Mehrotra, 2011. "Risk-adjusted budget allocation models with application in homeland security," IISE Transactions, Taylor & Francis Journals, vol. 43(12), pages 819-839.
    2. Darinka Dentcheva & Andrzej Ruszczynski, 2004. "Optimization Under First Order Stochastic Dominance Constraints," GE, Growth, Math methods 0403002, University Library of Munich, Germany, revised 07 Aug 2005.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leilei Zhang & Tito Homem-de-Mello, 2017. "An Optimal Path Model for the Risk-Averse Traveler," Transportation Science, INFORMS, vol. 51(2), pages 518-535, May.
    2. Post, Thierry, 2016. "Standard Stochastic Dominance," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1009-1020.
    3. Fang, Yi & Post, Thierry, 2017. "Higher-degree stochastic dominance optimality and efficiency," European Journal of Operational Research, Elsevier, vol. 261(3), pages 984-993.
    4. Escudero, Laureano F. & Garín, María Araceli & Merino, María & Pérez, Gloria, 2016. "On time stochastic dominance induced by mixed integer-linear recourse in multistage stochastic programs," European Journal of Operational Research, Elsevier, vol. 249(1), pages 164-176.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. William Haskell & J. Shanthikumar & Z. Shen, 2013. "Optimization with a class of multivariate integral stochastic order constraints," Annals of Operations Research, Springer, vol. 206(1), pages 147-162, July.
    2. Walter Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    3. Walter J. Gutjahr & Alois Pichler, 2016. "Stochastic multi-objective optimization: a survey on non-scalarizing methods," Annals of Operations Research, Springer, vol. 236(2), pages 475-499, January.
    4. Xiao Liu & Simge Küçükyavuz & Nilay Noyan, 2017. "Robust multicriteria risk-averse stochastic programming models," Annals of Operations Research, Springer, vol. 259(1), pages 259-294, December.
    5. Minjiao Zhang & Simge Küçükyavuz & Saumya Goel, 2014. "A Branch-and-Cut Method for Dynamic Decision Making Under Joint Chance Constraints," Management Science, INFORMS, vol. 60(5), pages 1317-1333, May.
    6. Lizyayev, Andrey & Ruszczyński, Andrzej, 2012. "Tractable Almost Stochastic Dominance," European Journal of Operational Research, Elsevier, vol. 218(2), pages 448-455.
    7. Guo, Xu & Wong, Wing-Keung, 2016. "Multivariate Stochastic Dominance for Risk Averters and Risk Seekers," MPRA Paper 70637, University Library of Munich, Germany.
    8. Shan, Xiaojun & Zhuang, Jun, 2013. "Hybrid defensive resource allocations in the face of partially strategic attackers in a sequential defender–attacker game," European Journal of Operational Research, Elsevier, vol. 228(1), pages 262-272.
    9. Darinka Dentcheva & Gabriela Martinez & Eli Wolfhagen, 2016. "Augmented Lagrangian Methods for Solving Optimization Problems with Stochastic-Order Constraints," Operations Research, INFORMS, vol. 64(6), pages 1451-1465, December.
    10. Jinwook Lee & András Prékopa, 2015. "Decision-making from a risk assessment perspective for Corporate Mergers and Acquisitions," Computational Management Science, Springer, vol. 12(2), pages 243-266, April.
    11. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    12. Jing Voon Chen & Julia L. Higle & Michael Hintlian, 2018. "A systematic approach for examining the impact of calibration uncertainty in disease modeling," Computational Management Science, Springer, vol. 15(3), pages 541-561, October.
    13. Christian Deffo Tassak & Jules Sadefo Kamdem & Louis Aimé Fono & Nicolas Gabriel Andjiga, 2017. "Characterization of order dominances on fuzzy variables for portfolio selection with fuzzy returns," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(12), pages 1491-1502, December.
    14. Yongchao Liu & Huifu Xu & Gui-Hua Lin, 2012. "Stability Analysis of One Stage Stochastic Mathematical Programs with Complementarity Constraints," Journal of Optimization Theory and Applications, Springer, vol. 152(2), pages 537-555, February.
    15. Peiqiu Guan & Jun Zhuang, 2016. "Modeling Resources Allocation in Attacker‐Defender Games with “Warm Up” CSF," Risk Analysis, John Wiley & Sons, vol. 36(4), pages 776-791, April.
    16. Darinka Dentcheva & Eli Wolfhagen, 2016. "Two-Stage Optimization Problems with Multivariate Stochastic Order Constraints," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 1-22, February.
    17. Matteo Rocca, 2025. "Sensitivity to uncertainty and scalarization in robust multiobjective optimization: an overview with application to mean-variance portfolio optimization," Annals of Operations Research, Springer, vol. 346(2), pages 1671-1686, March.
    18. Ya Ping Fang & Nan Jing Huang & Xiao Qi Yang, 2012. "Local Smooth Representations of Parametric Semiclosed Polyhedra with Applications to Sensitivity in Piecewise Linear Programs," Journal of Optimization Theory and Applications, Springer, vol. 155(3), pages 810-839, December.
    19. Nilay Noyan, 2010. "Alternate risk measures for emergency medical service system design," Annals of Operations Research, Springer, vol. 181(1), pages 559-589, December.
    20. Shan, Xiaojun & Zhuang, Jun, 2018. "Modeling cumulative defensive resource allocation against a strategic attacker in a multi-period multi-target sequential game," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 12-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:232:y:2014:i:3:p:572-583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.