IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v60y2012i3p682-699.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Optimization Under Probabilistic Envelope Constraints

Author

Listed:
  • Huan Xu

    (Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Republic of Singapore)

  • Constantine Caramanis

    (Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712)

  • Shie Mannor

    (Department of Electrical Engineering, The Technion--Israel Institute of Technology, 32000 Haifa, Israel)

Abstract

Chance constraints are an important modeling tool in stochastic optimization, providing probabilistic guarantees that a solution “succeeds” in satisfying a given constraint. Although they control the probability of “success,” they provide no control whatsoever in the event of a “failure.” That is, they do not distinguish between a slight overshoot or undershoot of the bounds and more catastrophic violation. In short, they do not capture the magnitude of violation of the bounds. This paper addresses precisely this topic, focusing on linear constraints and ellipsoidal (Gaussian-like) uncertainties. We show that the problem of requiring different probabilistic guarantees at each level of constraint violation can be reformulated as a semi-infinite optimization problem. We provide conditions that guarantee polynomial-time solvability of the resulting semi-infinite formulation. We show further that this resulting problem is what has been called a comprehensive robust optimization problem in the literature. As a byproduct, we provide tight probabilistic bounds for comprehensive robust optimization. Thus, analogously to the connection between chance constraints and robust optimization, we provide a broader connection between probabilistic envelope constraints and comprehensive robust optimization.

Suggested Citation

  • Huan Xu & Constantine Caramanis & Shie Mannor, 2012. "Optimization Under Probabilistic Envelope Constraints," Operations Research, INFORMS, vol. 60(3), pages 682-699, June.
  • Handle: RePEc:inm:oropre:v:60:y:2012:i:3:p:682-699
    DOI: 10.1287/opre.1120.1054
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1120.1054
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1120.1054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Erick Delage & Shie Mannor, 2010. "Percentile Optimization for Markov Decision Processes with Parameter Uncertainty," Operations Research, INFORMS, vol. 58(1), pages 203-213, February.
    2. Mao, James C T, 1970. "Survey of Capital Budgeting: Theory and Practice," Journal of Finance, American Finance Association, vol. 25(2), pages 349-360, May.
    3. Andrzej Ruszczyński & Alexander Shapiro, 2006. "Optimization of Convex Risk Functions," Mathematics of Operations Research, INFORMS, vol. 31(3), pages 433-452, August.
    4. Xin Chen & Melvyn Sim & Peng Sun & Jiawei Zhang, 2008. "A Linear Decision-Based Approximation Approach to Stochastic Programming," Operations Research, INFORMS, vol. 56(2), pages 344-357, April.
    5. Dimitris Bertsimas & David B. Brown, 2009. "Constructing Uncertainty Sets for Robust Linear Optimization," Operations Research, INFORMS, vol. 57(6), pages 1483-1495, December.
    6. Darinka Dentcheva & Andrzej Ruszczynski, 2004. "Optimization Under First Order Stochastic Dominance Constraints," GE, Growth, Math methods 0403002, University Library of Munich, Germany, revised 07 Aug 2005.
    7. David B. Brown & Melvyn Sim, 2009. "Satisficing Measures for Analysis of Risky Positions," Management Science, INFORMS, vol. 55(1), pages 71-84, January.
    8. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    9. ,, 2000. "Problems And Solutions," Econometric Theory, Cambridge University Press, vol. 16(2), pages 287-299, April.
    10. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    11. John W. Payne & Dan J. Laughhunn & Roy Crum, 1980. "Translation of Gambles and Aspiration Level Effects in Risky Choice Behavior," Management Science, INFORMS, vol. 26(10), pages 1039-1060, October.
    12. Bruce L. Miller & Harvey M. Wagner, 1965. "Chance Constrained Programming with Joint Constraints," Operations Research, INFORMS, vol. 13(6), pages 930-945, December.
    13. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    14. Wenqing Chen & Melvyn Sim, 2009. "Goal-Driven Optimization," Operations Research, INFORMS, vol. 57(2), pages 342-357, April.
    15. Xin Chen & Melvyn Sim & Peng Sun, 2007. "A Robust Optimization Perspective on Stochastic Programming," Operations Research, INFORMS, vol. 55(6), pages 1058-1071, December.
    16. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    17. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    18. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    19. John W. Payne & Dan J. Laughhunn & Roy Crum, 1981. "Note---Further Tests of Aspiration Level Effects in Risky Choice Behavior," Management Science, INFORMS, vol. 27(8), pages 953-958, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Kun & Zhu, Joe, 2019. "Computational tractability of chance constrained data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 274(3), pages 1037-1046.
    2. Bismark Singh & Bernard Knueven, 2021. "Lagrangian relaxation based heuristics for a chance-constrained optimization model of a hybrid solar-battery storage system," Journal of Global Optimization, Springer, vol. 80(4), pages 965-989, August.
    3. Yue Zhao & Zhi Chen & Zhenzhen Zhang, 2023. "Distributionally Robust Chance-Constrained p -Hub Center Problem," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1361-1382, November.
    4. Feng Liu & Zhi Chen & Shuming Wang, 2023. "Globalized Distributionally Robust Counterpart," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1120-1142, September.
    5. Aharon Ben-Tal & Ruud Brekelmans & Dick den Hertog & Jean-Philippe Vial, 2017. "Globalized Robust Optimization for Nonlinear Uncertain Inequalities," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 350-366, May.
    6. Vincent Tsz Fai Chow & Zheng Cui & Daniel Zhuoyu Long, 2022. "Target-Oriented Distributionally Robust Optimization and Its Applications to Surgery Allocation," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2058-2072, July.
    7. Grani A. Hanasusanto & Vladimir Roitch & Daniel Kuhn & Wolfram Wiesemann, 2017. "Ambiguous Joint Chance Constraints Under Mean and Dispersion Information," Operations Research, INFORMS, vol. 65(3), pages 751-767, June.
    8. Arthur Flajolet & Sébastien Blandin & Patrick Jaillet, 2018. "Robust Adaptive Routing Under Uncertainty," Operations Research, INFORMS, vol. 66(1), pages 210-229, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao-Wei Lam & Tsan Sheng Ng & Melvyn Sim & Jin-Hwa Song, 2013. "Multiple Objectives Satisficing Under Uncertainty," Operations Research, INFORMS, vol. 61(1), pages 214-227, February.
    2. Wenqing Chen & Melvyn Sim, 2009. "Goal-Driven Optimization," Operations Research, INFORMS, vol. 57(2), pages 342-357, April.
    3. Nicholas G. Hall & Daniel Zhuoyu Long & Jin Qi & Melvyn Sim, 2015. "Managing Underperformance Risk in Project Portfolio Selection," Operations Research, INFORMS, vol. 63(3), pages 660-675, June.
    4. Dimitris Bertsimas & Melvyn Sim & Meilin Zhang, 2019. "Adaptive Distributionally Robust Optimization," Management Science, INFORMS, vol. 65(2), pages 604-618, February.
    5. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    6. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    7. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    8. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    9. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    10. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    11. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    12. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    13. L. Jeff Hong & Zhiyuan Huang & Henry Lam, 2021. "Learning-Based Robust Optimization: Procedures and Statistical Guarantees," Management Science, INFORMS, vol. 67(6), pages 3447-3467, June.
    14. Joel Goh & Melvyn Sim, 2011. "Robust Optimization Made Easy with ROME," Operations Research, INFORMS, vol. 59(4), pages 973-985, August.
    15. Fertis, Apostolos & Baes, Michel & Lüthi, Hans-Jakob, 2012. "Robust risk management," European Journal of Operational Research, Elsevier, vol. 222(3), pages 663-672.
    16. Pengyu Qian & Zizhuo Wang & Zaiwen Wen, 2015. "A Composite Risk Measure Framework for Decision Making under Uncertainty," Papers 1501.01126, arXiv.org.
    17. Sandra Cruz Caçador & Pedro Manuel Cortesão Godinho & Joana Maria Pina Cabral Matos Dias, 2022. "A minimax regret portfolio model based on the investor’s utility loss," Operational Research, Springer, vol. 22(1), pages 449-484, March.
    18. Gülpınar, Nalan & Pachamanova, Dessislava & Çanakoğlu, Ethem, 2013. "Robust strategies for facility location under uncertainty," European Journal of Operational Research, Elsevier, vol. 225(1), pages 21-35.
    19. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    20. Mengshi Lu & Zuo‐Jun Max Shen, 2021. "A Review of Robust Operations Management under Model Uncertainty," Production and Operations Management, Production and Operations Management Society, vol. 30(6), pages 1927-1943, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:60:y:2012:i:3:p:682-699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.