IDEAS home Printed from
   My bibliography  Save this article

Robust ranking and portfolio optimization


  • Nguyen, Tri-Dung
  • Lo, Andrew W.


The portfolio optimization problem has attracted researchers from many disciplines to resolve the issue of poor out-of-sample performance due to estimation errors in the expected returns. A practical method for portfolio construction is to use assets’ ordering information, expressed in the form of preferences over the stocks, instead of the exact expected returns. Due to the fact that the ranking itself is often described with uncertainty, we introduce a generic robust ranking model and apply it to portfolio optimization. In this problem, there are n objects whose ranking is in a discrete uncertainty set. We want to find a weight vector that maximizes some generic objective function for the worst realization of the ranking. This robust ranking problem is a mixed integer minimax problem and is very difficult to solve in general. To solve this robust ranking problem, we apply the constraint generation method, where constraints are efficiently generated by solving a network flow problem. For empirical tests, we use post-earnings-announcement drifts to obtain ranking uncertainty sets for the stocks in the DJIA index. We demonstrate that our robust portfolios produce smaller risk compared to their non-robust counterparts.

Suggested Citation

  • Nguyen, Tri-Dung & Lo, Andrew W., 2012. "Robust ranking and portfolio optimization," European Journal of Operational Research, Elsevier, vol. 221(2), pages 407-416.
  • Handle: RePEc:eee:ejores:v:221:y:2012:i:2:p:407-416
    DOI: 10.1016/j.ejor.2012.03.023

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Lin, Chang-Chun & Liu, Yi-Ting, 2008. "Genetic algorithms for portfolio selection problems with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 185(1), pages 393-404, February.
    2. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    3. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    4. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    5. Gondzio, Jacek & Grothey, Andreas, 2007. "Solving non-linear portfolio optimization problems with the primal-dual interior point method," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1019-1029, September.
    6. repec:bla:joares:v:6:y:1968:i:2:p:159-178 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:ebl:ecbull:eb-17-00061 is not listed on IDEAS
    2. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    3. Black, Geoffrey & Holley, Donald & Solan, David & Bergloff, Michael, 2014. "Fiscal and economic impacts of state incentives for wind energy development in the Western United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 136-144.
    4. Lioui, Abraham & Poncet, Patrice, 2013. "Optimal benchmarking for active portfolio managers," European Journal of Operational Research, Elsevier, vol. 226(2), pages 268-276.
    5. Chang, Zhiqi & Song, Shiji & Zhang, Yuli & Ding, Jian-Ya & Zhang, Rui & Chiong, Raymond, 2017. "Distributionally robust single machine scheduling with risk aversion," European Journal of Operational Research, Elsevier, vol. 256(1), pages 261-274.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:221:y:2012:i:2:p:407-416. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.