IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v215y2011i1p21-24.html
   My bibliography  Save this article

Locating a competitive facility in the plane with a robustness criterion

Author

Listed:
  • Blanquero, R.
  • Carrizosa, E.
  • Hendrix, E.M.T.

Abstract

A new model for locating a competitive facility in the plane in a robust way is presented and embedded in the literature on robustness in facility location. Its mathematical properties are investigated and new sharp bounds for a deterministic method that guarantees the global optimum are derived and evaluated.

Suggested Citation

  • Blanquero, R. & Carrizosa, E. & Hendrix, E.M.T., 2011. "Locating a competitive facility in the plane with a robustness criterion," European Journal of Operational Research, Elsevier, vol. 215(1), pages 21-24, November.
  • Handle: RePEc:eee:ejores:v:215:y:2011:i:1:p:21-24
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711004887
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eligius M.T. Hendrix & Boglárka G.-Tóth, 2010. "Introduction to Nonlinear and Global Optimization," Springer Optimization and Its Applications, Springer, number 978-0-387-88670-1, June.
    2. Pierre Hansen & Dominique Peeters & Denis Richard & Jacques-Francois Thisse, 1985. "The Minisum and Minimax Location Problems Revisited," Operations Research, INFORMS, vol. 33(6), pages 1251-1265, December.
    3. Zvi Drezner & Atsuo Suzuki, 2004. "The Big Triangle Small Triangle Method for the Solution of Nonconvex Facility Location Problems," Operations Research, INFORMS, vol. 52(1), pages 128-135, February.
    4. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    5. Tammy Drezner & Zvi Drezner & Shogo Shiode, 2002. "A Threshold‐Satisfying Competitive Location Model," Journal of Regional Science, Wiley Blackwell, vol. 42(2), pages 287-299, May.
    6. Emilio Carrizosa & Stefan Nickel, 2003. "Robust facility location," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 58(2), pages 331-349, November.
    7. R. Blanquero & E. Carrizosa, 2000. "Optimization of the Norm of a Vector-Valued DC Function and Applications," Journal of Optimization Theory and Applications, Springer, vol. 107(2), pages 245-260, November.
    8. Rafael Blanquero & Emilio Carrizosa, 2010. "On the norm of a dc function," Journal of Global Optimization, Springer, vol. 48(2), pages 209-213, October.
    9. Hendrix, Eligius M. T. & Mecking, Carmen J. & Hendriks, Theo H. B., 1996. "Finding robust solutions for product design problems," European Journal of Operational Research, Elsevier, vol. 92(1), pages 28-36, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernández, José & Hendrix, Eligius M.T., 2013. "Recent insights in Huff-like competitive facility location and design," European Journal of Operational Research, Elsevier, vol. 227(3), pages 581-584.
    2. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    3. Kalaı¨, Rim & Lamboray, Claude & Vanderpooten, Daniel, 2012. "Lexicographic α-robustness: An alternative to min–max criteria," European Journal of Operational Research, Elsevier, vol. 220(3), pages 722-728.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tammy Drezner, 2009. "Location of retail facilities under conditions of uncertainty," Annals of Operations Research, Springer, vol. 167(1), pages 107-120, March.
    2. J. Redondo & J. Fernández & I. García & P. Ortigosa, 2009. "A robust and efficient algorithm for planar competitive location problems," Annals of Operations Research, Springer, vol. 167(1), pages 87-105, March.
    3. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    4. De Rosa, Vincenzo & Gebhard, Marina & Hartmann, Evi & Wollenweber, Jens, 2013. "Robust sustainable bi-directional logistics network design under uncertainty," International Journal of Production Economics, Elsevier, vol. 145(1), pages 184-198.
    5. Haase, Knut & Hoppe, Mirko, 2008. "Standortplanung unter Wettbewerb - Teil 1: Grundlagen," Discussion Papers 2/2008, Technische Universität Dresden, "Friedrich List" Faculty of Transport and Traffic Sciences, Institute of Transport and Economics.
    6. M. Hakan Akyüz & Temel Öncan & İ. Kuban Altınel, 2019. "Branch and bound algorithms for solving the multi-commodity capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 279(1), pages 1-42, August.
    7. Stolletz, Raik & Stolletz, Lars, 2008. "Linearisierungsverfahren für Standortplanungsprobleme mit nichtlinearen Transportkosten," Hannover Economic Papers (HEP) dp-388, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    8. Fernandez, Jose & Pelegri'n, Blas & Plastria, Frank & Toth, Boglarka, 2007. "Solving a Huff-like competitive location and design model for profit maximization in the plane," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1274-1287, June.
    9. Raik Stolletz & Lars Stolletz, 2008. "Linearisierungsverfahren für Standortplanungsprobleme mit nichtlinearen Transportkosten," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 19(3), pages 261-280, December.
    10. Hoai An Le Thi & Vinh Thanh Ho & Tao Pham Dinh, 2019. "A unified DC programming framework and efficient DCA based approaches for large scale batch reinforcement learning," Journal of Global Optimization, Springer, vol. 73(2), pages 279-310, February.
    11. P. Ortigosa & E. Hendrix & J. Redondo, 2015. "On heuristic bi-criterion methods for semi-obnoxious facility location," Computational Optimization and Applications, Springer, vol. 61(1), pages 205-217, May.
    12. Blanquero, Rafael & Carrizosa, Emilio & Schöbel, Anita & Scholz, Daniel, 2011. "A global optimization procedure for the location of a median line in the three-dimensional space," European Journal of Operational Research, Elsevier, vol. 215(1), pages 14-20, November.
    13. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    14. Alfandari, Laurent, 2004. "Choice Rules with Size Constraints for Multiple Criteria Decision Making," ESSEC Working Papers DR 04002, ESSEC Research Center, ESSEC Business School.
    15. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    16. Madadi, AliReza & Kurz, Mary E. & Mason, Scott J. & Taaffe, Kevin M., 2014. "Supply chain design under quality disruptions and tainted materials delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 105-123.
    17. Zhen, J. & den Hertog, D., 2015. "Computing the Maximum Volume Inscribed Ellipsoid of a Polytopic Projection," Discussion Paper 2015-004, Tilburg University, Center for Economic Research.
    18. Sauvey, Christophe & Melo, Teresa & Correia, Isabel, 2019. "Two-phase heuristics for a multi-period capacitated facility location problem with service-differentiated customers," Technical Reports on Logistics of the Saarland Business School 16, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    19. T Drezner & Z Drezner, 2008. "Lost demand in a competitive environment," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 362-371, March.
    20. Fang Lu & John J. Hasenbein & David P. Morton, 2016. "Modeling and Optimization of a Spatial Detection System," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 512-526, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:215:y:2011:i:1:p:21-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.