IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v214y2011i3p683-696.html
   My bibliography  Save this article

Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling

Author

Listed:
  • Crombecq, K.
  • Laermans, E.
  • Dhaene, T.

Abstract

Simulated computer experiments have become a viable cost-effective alternative for controlled real-life experiments. However, the simulation of complex systems with multiple input and output parameters can be a very time-consuming process. Many of these high-fidelity simulators need minutes, hours or even days to perform one simulation. The goal of global surrogate modeling is to create an approximation model that mimics the original simulator, based on a limited number of expensive simulations, but can be evaluated much faster. The set of simulations performed to create this model is called the experimental design. Traditionally, one-shot designs such as the Latin hypercube and factorial design are used, and all simulations are performed before the first model is built. In order to reduce the number of simulations needed to achieve the desired accuracy, sequential design methods can be employed. These methods generate the samples for the experimental design one by one, without knowing the total number of samples in advance. In this paper, the authors perform an extensive study of new and state-of-the-art space-filling sequential design methods. It is shown that the new sequential methods proposed in this paper produce results comparable to the best one-shot experimental designs available right now.

Suggested Citation

  • Crombecq, K. & Laermans, E. & Dhaene, T., 2011. "Efficient space-filling and non-collapsing sequential design strategies for simulation-based modeling," European Journal of Operational Research, Elsevier, vol. 214(3), pages 683-696, November.
  • Handle: RePEc:eee:ejores:v:214:y:2011:i:3:p:683-696
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711004577
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Z. G. Qian, 2009. "Nested Latin hypercube designs," Biometrika, Biometrika Trust, vol. 96(4), pages 957-970.
    2. Edwin R. van Dam & Bart Husslage & Dick den Hertog & Hans Melissen, 2007. "Maximin Latin Hypercube Designs in Two Dimensions," Operations Research, INFORMS, vol. 55(1), pages 158-169, February.
    3. Husslage, B.G.M., 2006. "Maximin designs for computer experiments," Other publications TiSEM 216147a0-9c82-48d5-8913-6, Tilburg University, School of Economics and Management.
    4. Batmaz, Inci & Tunali, Semra, 2003. "Small response surface designs for metamodel estimation," European Journal of Operational Research, Elsevier, vol. 145(2), pages 455-470, March.
    5. Grosso, A. & Jamali, A.R.M.J.U. & Locatelli, M., 2009. "Finding maximin latin hypercube designs by Iterated Local Search heuristics," European Journal of Operational Research, Elsevier, vol. 197(2), pages 541-547, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Ning-Cong & Zuo, Ming J. & Zhou, Chengning, 2018. "A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 330-338.
    2. Koziel, Slawomir & Pietrenko-Dabrowska, Anna, 2022. "Constrained multi-objective optimization of compact microwave circuits by design triangulation and pareto front interpolation," European Journal of Operational Research, Elsevier, vol. 299(1), pages 302-312.
    3. Xiongxiong You & Mengya Zhang & Diyin Tang & Zhanwen Niu, 2022. "An active learning method combining adaptive kriging and weighted penalty for structural reliability analysis," Journal of Risk and Reliability, , vol. 236(1), pages 160-172, February.
    4. Kleijnen, Jack P.C., 2017. "Regression and Kriging metamodels with their experimental designs in simulation: A review," European Journal of Operational Research, Elsevier, vol. 256(1), pages 1-16.
    5. Nicholas Davey & Nicolas Langrené & Wen Chen & Jonathan R. Rhodes & Simon Dunstall & Saman Halgamuge, 2023. "Designing higher value roads to preserve species at risk by optimally controlling traffic flow," Annals of Operations Research, Springer, vol. 320(2), pages 663-693, January.
    6. Vinícius Resende Domingues & Luan Carlos de Sena Monteiro Ozelim & André Pacheco de Assis & André Luís Brasil Cavalcante, 2022. "Combining Numerical Simulations, Artificial Intelligence and Intelligent Sampling Algorithms to Build Surrogate Models and Calculate the Probability of Failure of Urban Tunnels," Sustainability, MDPI, vol. 14(11), pages 1-29, May.
    7. Roy, Pamphile T. & Jofre, Lluís & Jouhaud, Jean-Christophe & Cuenot, Bénédicte, 2020. "Versatile sequential sampling algorithm using Kernel Density Estimation," European Journal of Operational Research, Elsevier, vol. 284(1), pages 201-211.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liuqing Yang & Yongdao Zhou & Min-Qian Liu, 2021. "Maximin distance designs based on densest packings," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 615-634, July.
    2. Husslage, B.G.M. & Rennen, G. & van Dam, E.R. & den Hertog, D., 2008. "Space-Filling Latin Hypercube Designs For Computer Experiments (Revision of CentER DP 2006-18)," Discussion Paper 2008-104, Tilburg University, Center for Economic Research.
    3. Edwin R. van Dam & Gijs Rennen & Bart Husslage, 2009. "Bounds for Maximin Latin Hypercube Designs," Operations Research, INFORMS, vol. 57(3), pages 595-608, June.
    4. van Dam, E.R. & Rennen, G. & Husslage, B.G.M., 2007. "Bounds for Maximin Latin Hypercube Designs," Other publications TiSEM da0c15be-f18e-474e-b557-f, Tilburg University, School of Economics and Management.
    5. Vinícius Resende Domingues & Luan Carlos de Sena Monteiro Ozelim & André Pacheco de Assis & André Luís Brasil Cavalcante, 2022. "Combining Numerical Simulations, Artificial Intelligence and Intelligent Sampling Algorithms to Build Surrogate Models and Calculate the Probability of Failure of Urban Tunnels," Sustainability, MDPI, vol. 14(11), pages 1-29, May.
    6. Husslage, B.G.M. & Rennen, G. & van Dam, E.R. & den Hertog, D., 2008. "Space-Filling Latin Hypercube Designs For Computer Experiments (Revision of CentER DP 2006-18)," Other publications TiSEM 1b5d18c7-b66f-4a9f-838c-b, Tilburg University, School of Economics and Management.
    7. Tonghui Pang & Yan Wang & Jian-Feng Yang, 2022. "Asymptotically optimal maximin distance Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 85(4), pages 405-418, May.
    8. Jing Zhang & Jin Xu & Kai Jia & Yimin Yin & Zhengming Wang, 2019. "Optimal Sliced Latin Hypercube Designs with Slices of Arbitrary Run Sizes," Mathematics, MDPI, vol. 7(9), pages 1-16, September.
    9. Bozağaç, Doruk & Batmaz, İnci & Oğuztüzün, Halit, 2016. "Dynamic simulation metamodeling using MARS: A case of radar simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 124(C), pages 69-86.
    10. Jack P. C. Kleijnen & Susan M. Sanchez & Thomas W. Lucas & Thomas M. Cioppa, 2005. "State-of-the-Art Review: A User’s Guide to the Brave New World of Designing Simulation Experiments," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 263-289, August.
    11. Edwin Dam & Bart Husslage & Dick Hertog, 2010. "One-dimensional nested maximin designs," Journal of Global Optimization, Springer, vol. 46(2), pages 287-306, February.
    12. Vikram V. Garg & Roy H. Stogner, 2017. "Hierarchical Latin Hypercube Sampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 673-682, April.
    13. Rennen, G., 2008. "Subset Selection from Large Datasets for Kriging Modeling," Discussion Paper 2008-26, Tilburg University, Center for Economic Research.
    14. Sukanta Dash & Baidya Nath Mandal & Rajender Parsad, 2020. "On the construction of nested orthogonal Latin hypercube designs," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(3), pages 347-353, April.
    15. Prescott, Philip, 2009. "Orthogonal-column Latin hypercube designs with small samples," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1191-1200, February.
    16. Chen, Xi & Zhou, Qiang, 2017. "Sequential design strategies for mean response surface metamodeling via stochastic kriging with adaptive exploration and exploitation," European Journal of Operational Research, Elsevier, vol. 262(2), pages 575-585.
    17. Jin Xu & Jiajie Chen & Peter Z. G. Qian, 2015. "Sequentially Refined Latin Hypercube Designs: Reusing Every Point," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1696-1706, December.
    18. Shields, Michael D. & Teferra, Kirubel & Hapij, Adam & Daddazio, Raymond P., 2015. "Refined Stratified Sampling for efficient Monte Carlo based uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 310-325.
    19. Stinstra, E., 2006. "The meta-model approach for simulation-based design optimization," Other publications TiSEM 713f828a-4716-4a19-af00-e, Tilburg University, School of Economics and Management.
    20. Edwin R. van Dam & Bart Husslage & Dick den Hertog & Hans Melissen, 2007. "Maximin Latin Hypercube Designs in Two Dimensions," Operations Research, INFORMS, vol. 55(1), pages 158-169, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:214:y:2011:i:3:p:683-696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.