IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v214y2011i2p308-316.html

Proactive policies for the stochastic resource-constrained project scheduling problem

Author

Listed:
  • Deblaere, Filip
  • Demeulemeester, Erik
  • Herroelen, Willy

Abstract

The resource-constrained project scheduling problem involves the determination of a schedule of the project activities, satisfying the precedence and resource constraints while minimizing the project duration. In practice, activity durations may be subject to variability. We propose a stochastic methodology for the determination of a project execution policy and a vector of predictive activity starting times with the objective of minimizing a cost function that consists of the weighted expected activity starting time deviations and the penalties or bonuses associated with late or early project completion. In a computational experiment, we show that our procedure greatly outperforms existing algorithms described in the literature.

Suggested Citation

  • Deblaere, Filip & Demeulemeester, Erik & Herroelen, Willy, 2011. "Proactive policies for the stochastic resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 214(2), pages 308-316, October.
  • Handle: RePEc:eee:ejores:v:214:y:2011:i:2:p:308-316
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221711003638
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Erik L. Demeulemeester & Willy S. Herroelen, 1997. "New Benchmark Results for the Resource-Constrained Project Scheduling Problem," Management Science, INFORMS, vol. 43(11), pages 1485-1492, November.
    2. Van de Vonder, Stijn & Demeulemeester, Erik & Herroelen, Willy, 2008. "Proactive heuristic procedures for robust project scheduling: An experimental analysis," European Journal of Operational Research, Elsevier, vol. 189(3), pages 723-733, September.
    3. Artigues, Christian & Michelon, Philippe & Reusser, Stephane, 2003. "Insertion techniques for static and dynamic resource-constrained project scheduling," European Journal of Operational Research, Elsevier, vol. 149(2), pages 249-267, September.
    4. Erik Demeulemeester & Willy Herroelen, 1992. "A Branch-and-Bound Procedure for the Multiple Resource-Constrained Project Scheduling Problem," Management Science, INFORMS, vol. 38(12), pages 1803-1818, December.
    5. D. Debels & M. Vanhoucke, 2005. "A Decomposition-Based Heuristic For The Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/293, Ghent University, Faculty of Economics and Business Administration.
    6. Lambrechts, Olivier & Demeulemeester, Erik & Herroelen, Willy, 2008. "A tabu search procedure for developing robust predictive project schedules," International Journal of Production Economics, Elsevier, vol. 111(2), pages 493-508, February.
    7. G Zhu & J F Bard & G Yu, 2005. "Disruption management for resource-constrained project scheduling," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(4), pages 365-381, April.
    8. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brčić, Mario & Katić, Marija & Hlupić, Nikica, 2019. "Planning horizons based proactive rescheduling for stochastic resource-constrained project scheduling problems," European Journal of Operational Research, Elsevier, vol. 273(1), pages 58-66.
    2. Zamani, Reza, 2013. "A competitive magnet-based genetic algorithm for solving the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 229(2), pages 552-559.
    3. Pejman Peykani & Jafar Gheidar-Kheljani & Sheida Shahabadi & Seyyed Hassan Ghodsypour & Mojtaba Nouri, 2023. "A two-phase resource-constrained project scheduling approach for design and development of complex product systems," Operational Research, Springer, vol. 23(1), pages 1-25, March.
    4. Li, Haitao & Womer, Norman K., 2015. "Solving stochastic resource-constrained project scheduling problems by closed-loop approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 246(1), pages 20-33.
    5. Morteza Davari & Erik Demeulemeester, 2019. "The proactive and reactive resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 22(2), pages 211-237, April.
    6. Kaut, Michal & Vaagen, Hajnalka & Wallace, Stein W., 2021. "The combined impact of stochastic and correlated activity durations and design uncertainty on project plans," International Journal of Production Economics, Elsevier, vol. 233(C).
    7. Györgyi, Péter & Kis, Tamás & Szögi, Evelin, 2025. "Reactive scheduling of uncertain jobs with maximum time lags," European Journal of Operational Research, Elsevier, vol. 326(1), pages 69-77.
    8. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    9. Salim Rostami & Stefan Creemers & Roel Leus, 2018. "New strategies for stochastic resource-constrained project scheduling," Journal of Scheduling, Springer, vol. 21(3), pages 349-365, June.
    10. Rostami, Salim & Creemers, Stefan & Leus, Roel, 2024. "Maximizing the net present value of a project under uncertainty: Activity delays and dynamic policies," European Journal of Operational Research, Elsevier, vol. 317(1), pages 16-24.
    11. Carvalho, Andréa Nunes & Oliveira, Fabricio & Scavarda, Luiz Felipe, 2016. "Tactical capacity planning in a real-world ETO industry case: A robust optimization approach," International Journal of Production Economics, Elsevier, vol. 180(C), pages 158-171.
    12. Vaagen, Hajnalka & Kaut, Michal & Wallace, Stein W., 2017. "The impact of design uncertainty in engineer-to-order project planning," European Journal of Operational Research, Elsevier, vol. 261(3), pages 1098-1109.
    13. Portoleau, Tom & Artigues, Christian & Guillaume, Romain, 2024. "Robust decision trees for the multi-mode project scheduling problem with a resource investment objective and uncertain activity duration," European Journal of Operational Research, Elsevier, vol. 312(2), pages 525-540.
    14. Balouka, Noemie & Cohen, Izack, 2021. "A robust optimization approach for the multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 291(2), pages 457-470.
    15. Trietsch, Dan & Mazmanyan, Lilit & Gevorgyan, Lilit & Baker, Kenneth R., 2012. "Modeling activity times by the Parkinson distribution with a lognormal core: Theory and validation," European Journal of Operational Research, Elsevier, vol. 216(2), pages 386-396.
    16. Gutjahr, Walter J., 2015. "Bi-Objective Multi-Mode Project Scheduling Under Risk Aversion," European Journal of Operational Research, Elsevier, vol. 246(2), pages 421-434.
    17. Alfredo S. Ramos & Pablo A. Miranda-Gonzalez & Samuel Nucamendi-Guillén & Elias Olivares-Benitez, 2023. "A Formulation for the Stochastic Multi-Mode Resource-Constrained Project Scheduling Problem Solved with a Multi-Start Iterated Local Search Metaheuristic," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
    18. Karakaya, Sırma & Balcik, Burcu, 2024. "Developing a national pandemic vaccination calendar under supply uncertainty," Omega, Elsevier, vol. 124(C).
    19. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    20. Maziar Khoshsirat & Seyed Meysam Mousavi, 2024. "A new proactive and reactive approach for resource-constrained project scheduling problem under activity and resource disruption: a scenario-based robust optimization approach," Annals of Operations Research, Springer, vol. 338(1), pages 597-643, July.
    21. Said, Samer S. & Haouari, Mohamed, 2015. "A hybrid simulation-optimization approach for the robust Discrete Time/Cost Trade-off Problem," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 628-636.
    22. Xuejun Hu & Jianjiang Wang & Kaijun Leng, 2019. "The Interaction Between Critical Chain Sequencing, Buffer Sizing, and Reactive Actions in a CC/BM Framework," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(03), pages 1-22, June.
    23. Hongbo Li & Erik Demeulemeester, 2016. "A genetic algorithm for the robust resource leveling problem," Journal of Scheduling, Springer, vol. 19(1), pages 43-60, February.
    24. Rahman Torba & Stéphane Dauzère-Pérès & Claude Yugma & Cédric Gallais & Juliette Pouzet, 2024. "Solving a real-life multi-skill resource-constrained multi-project scheduling problem," Annals of Operations Research, Springer, vol. 338(1), pages 69-114, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yangyang Liang & Nanfang Cui & Tian Wang & Erik Demeulemeester, 2019. "Robust resource-constrained max-NPV project scheduling with stochastic activity duration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 219-254, March.
    2. Jürgen Kuster & Dietmar Jannach & Gerhard Friedrich, 2010. "Applying Local Rescheduling in response to schedule disruptions," Annals of Operations Research, Springer, vol. 180(1), pages 265-282, November.
    3. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    4. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    5. Morteza Davari & Erik Demeulemeester, 2019. "The proactive and reactive resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 22(2), pages 211-237, April.
    6. Horbach, Andrei, 2009. "A boolean satisfiability approach to the resource-constrained project scheduling problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 644, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    7. Guo, Weikang & Vanhoucke, Mario & Coelho, José, 2023. "A prediction model for ranking branch-and-bound procedures for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 579-595.
    8. Hongbo Li & Erik Demeulemeester, 2016. "A genetic algorithm for the robust resource leveling problem," Journal of Scheduling, Springer, vol. 19(1), pages 43-60, February.
    9. Bruni, M.E. & Di Puglia Pugliese, L. & Beraldi, P. & Guerriero, F., 2017. "An adjustable robust optimization model for the resource-constrained project scheduling problem with uncertain activity durations," Omega, Elsevier, vol. 71(C), pages 66-84.
    10. Tseng, Lin-Yu & Chen, Shih-Chieh, 2006. "A hybrid metaheuristic for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 175(2), pages 707-721, December.
    11. Wendi Tian & Erik Demeulemeester, 2014. "Railway scheduling reduces the expected project makespan over roadrunner scheduling in a multi-mode project scheduling environment," Annals of Operations Research, Springer, vol. 213(1), pages 271-291, February.
    12. Jan Böttcher & Andreas Drexl & Rainer Kolisch & Frank Salewski, 1999. "Project Scheduling Under Partially Renewable Resource Constraints," Management Science, INFORMS, vol. 45(4), pages 543-559, April.
    13. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    14. Ripon K. Chakrabortty & Ruhul A. Sarker & Daryl L. Essam, 2020. "Single mode resource constrained project scheduling with unreliable resources," Operational Research, Springer, vol. 20(3), pages 1369-1403, September.
    15. Sönke Hartmann, 1998. "A competitive genetic algorithm for resource‐constrained project scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 45(7), pages 733-750, October.
    16. Arno Sprecher, 2000. "Scheduling Resource-Constrained Projects Competitively at Modest Memory Requirements," Management Science, INFORMS, vol. 46(5), pages 710-723, May.
    17. Schirmer, Armin, 1998. "Adaptive control schemes for parameterized heuristic scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 488, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    18. Xiang Chu & Qiu-Yan Zhong & Shahid G. Khokhar, 2015. "Triage Scheduling Optimization for Mass Casualty and Disaster Response," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 32(06), pages 1-20, December.
    19. Pfeifer, Jeremy & Barker, Kash & Ramirez-Marquez, Jose E. & Morshedlou, Nazanin, 2015. "Quantifying the risk of project delays with a genetic algorithm," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 34-44.
    20. Al-Hinai, Nasr & ElMekkawy, T.Y., 2011. "Robust and stable flexible job shop scheduling with random machine breakdowns using a hybrid genetic algorithm," International Journal of Production Economics, Elsevier, vol. 132(2), pages 279-291, August.

    More about this item

    Keywords

    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:214:y:2011:i:2:p:308-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.