IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Global convergence of a robust filter SQP algorithm

Listed author(s):
  • Shen, Chungen
  • Xue, Wenjuan
  • Chen, Xiongda
Registered author(s):

    We present a robust filter SQP algorithm for solving constrained optimization problems. This algorithm is based on the modified quadratic programming proposed by Burke to avoid the infeasibility of the quadratic programming subproblem at each iteration. Compared with other filter SQP algorithms, our algorithm does not require any restoration phase procedure which may spend a large amount of computation. The main advantage of our algorithm is that it is globally convergent without requiring strong constraint qualifications, such as Mangasarian-Fromovitz constraint qualification (MFCQ) and the constant rank constraint qualification (CRCQ). Furthermore, the feasible limit points of the sequence generated by our algorithm are proven to be the KKT points if some weaker conditions are satisfied. Numerical results are also presented to show the efficiency of the algorithm.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal European Journal of Operational Research.

    Volume (Year): 206 (2010)
    Issue (Month): 1 (October)
    Pages: 34-45

    in new window

    Handle: RePEc:eee:ejores:v:206:y:2010:i:1:p:34-45
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Lopez, Marco & Still, Georg, 2007. "Semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 180(2), pages 491-518, July.
    2. Jian, Jin-Bao & Xu, Qing-Juan & Han, Dao-Lan, 2008. "A norm-relaxed method of feasible directions for finely discretized problems from semi-infinite programming," European Journal of Operational Research, Elsevier, vol. 186(1), pages 41-62, April.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:206:y:2010:i:1:p:34-45. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.