IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v194y2009i1p64-77.html
   My bibliography  Save this article

A location-allocation problem for a web services provider in a competitive market

Author

Listed:
  • Aboolian, Robert
  • Sun, Yi
  • Koehler, Gary J.

Abstract

Web Services have become a viable component technology in distributed e-commerce platforms. Due to the move to high-speed Internet communication and tremendous increases in computing power, network latency has begun to play a more important role in determining service response time. Hence, the locations of a Web Services provider's facilities, customer allocation, and the number of servers at each facility have a significant impact on its performance and customer satisfaction. In this paper we introduce a location-allocation model for a Web Services provider in a duopoly competitive market. Demands for services of these servers are available at each node of a network, and a subset of nodes is to be chosen to locate one or more servers in each. The objective is to maximize the provider's profit. The problem is formulated and analyzed. An exact solution approach is developed and the results of its efficiency are reported.

Suggested Citation

  • Aboolian, Robert & Sun, Yi & Koehler, Gary J., 2009. "A location-allocation problem for a web services provider in a competitive market," European Journal of Operational Research, Elsevier, vol. 194(1), pages 64-77, April.
  • Handle: RePEc:eee:ejores:v:194:y:2009:i:1:p:64-77
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)01154-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hakimi, S. Louis, 1983. "On locating new facilities in a competitive environment," European Journal of Operational Research, Elsevier, vol. 12(1), pages 29-35, January.
    2. Drezner, Zvi, 1982. "Competitive location strategies for two facilities," Regional Science and Urban Economics, Elsevier, vol. 12(4), pages 485-493, November.
    3. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2007. "Competitive facility location model with concave demand," European Journal of Operational Research, Elsevier, vol. 181(2), pages 598-619, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghavamifar, Ali & Makui, Ahmad & Taleizadeh, Ata Allah, 2018. "Designing a resilient competitive supply chain network under disruption risks: A real-world application," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 87-109.
    2. Robert Aboolian & Oded Berman & Dmitry Krass, 2012. "Profit Maximizing Distributed Service System Design with Congestion and Elastic Demand," Transportation Science, INFORMS, vol. 46(2), pages 247-261, May.
    3. Gohram Baloch & Fatma Gzara, 2020. "Strategic Network Design for Parcel Delivery with Drones Under Competition," Transportation Science, INFORMS, vol. 54(1), pages 204-228, January.
    4. Benneyan, James C. & Musdal, Hande & Ceyhan, Mehmet Erkan & Shiner, Brian & Watts, Bradley V., 2012. "Specialty care single and multi-period location–allocation models within the Veterans Health Administration," Socio-Economic Planning Sciences, Elsevier, vol. 46(2), pages 136-148.
    5. Cihan Çetinkaya & Samer Haffar, 2018. "A Risk-Based Location-Allocation Approach for Weapon Logistics," Logistics, MDPI, vol. 2(2), pages 1-15, May.
    6. Mashalah, Heider Al & Hassini, Elkafi & Gunasekaran, Angappa & Bhatt (Mishra), Deepa, 2022. "The impact of digital transformation on supply chains through e-commerce: Literature review and a conceptual framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tammy Drezner & Zvi Drezner & Atsuo Suzuki, 2019. "A cover based competitive facility location model with continuous demand," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(7), pages 565-581, October.
    2. Drezner, Zvi & Eiselt, H.A., 2024. "Competitive location models: A review," European Journal of Operational Research, Elsevier, vol. 316(1), pages 5-18.
    3. Thomas Byrne & Sándor P. Fekete & Jörg Kalcsics & Linda Kleist, 2023. "Competitive location problems: balanced facility location and the One-Round Manhattan Voronoi Game," Annals of Operations Research, Springer, vol. 321(1), pages 79-101, February.
    4. Küçükaydin, Hande & Aras, Necati & Kuban AltInel, I., 2011. "Competitive facility location problem with attractiveness adjustment of the follower: A bilevel programming model and its solution," European Journal of Operational Research, Elsevier, vol. 208(3), pages 206-220, February.
    5. Drezner, Tammy & Drezner, Zvi & Salhi, Said, 2002. "Solving the multiple competitive facilities location problem," European Journal of Operational Research, Elsevier, vol. 142(1), pages 138-151, October.
    6. Zvi Drezner & Dawit Zerom, 2024. "A refinement of the gravity model for competitive facility location," Computational Management Science, Springer, vol. 21(1), pages 1-18, June.
    7. Zvi Drezner & Mozart B. C. Menezes, 2016. "The wisdom of voters: evaluating the Weber objective in the plane at the Condorcet solution," Annals of Operations Research, Springer, vol. 246(1), pages 205-226, November.
    8. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2020. "Gradual cover competitive facility location," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 333-354, June.
    9. Eiselt, H.A. & Marianov, Vladimir, 2020. "Maximizing political vote in multiple districts," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    10. Mahmutogullari, Ali Irfan & Kara, Bahar Y., 2016. "Hub location under competition," European Journal of Operational Research, Elsevier, vol. 250(1), pages 214-225.
    11. Granot, Daniel & Granot, Frieda & Raviv, Tal, 2010. "On competitive sequential location in a network with a decreasing demand intensity," European Journal of Operational Research, Elsevier, vol. 205(2), pages 301-312, September.
    12. Vladimir Marianov & H. A. Eiselt & Armin Lüer-Villagra, 2020. "The Follower Competitive Location Problem with Comparison-Shopping," Networks and Spatial Economics, Springer, vol. 20(2), pages 367-393, June.
    13. Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2021. "Optimizing facility location and design," European Journal of Operational Research, Elsevier, vol. 289(1), pages 31-43.
    14. Uno, Takeshi & Katagiri, Hideki, 2008. "Single- and multi-objective defensive location problems on a network," European Journal of Operational Research, Elsevier, vol. 188(1), pages 76-84, July.
    15. Tammy Drezner & Zvi Drezner & Dawit Zerom, 2020. "Facility Dependent Distance Decay in Competitive Location," Networks and Spatial Economics, Springer, vol. 20(4), pages 915-934, December.
    16. Berman, Oded & Drezner, Zvi, 2008. "The p-median problem under uncertainty," European Journal of Operational Research, Elsevier, vol. 189(1), pages 19-30, August.
    17. Menezes, Mozart B.C. & da Silveira, Giovani J.C. & Drezner, Zvi, 2016. "Democratic elections and centralized decisions: Condorcet and Approval Voting compared with Median and Coverage locations," European Journal of Operational Research, Elsevier, vol. 253(1), pages 195-203.
    18. Saidani, Nasreddine & Chu, Feng & Chen, Haoxun, 2012. "Competitive facility location and design with reactions of competitors already in the market," European Journal of Operational Research, Elsevier, vol. 219(1), pages 9-17.
    19. T Drezner & Z Drezner & P Kalczynski, 2011. "A cover-based competitive location model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 100-113, January.
    20. Eiselt, H. A. & Laporte, Gilbert, 1997. "Sequential location problems," European Journal of Operational Research, Elsevier, vol. 96(2), pages 217-231, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:194:y:2009:i:1:p:64-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.