IDEAS home Printed from
   My bibliography  Save this article

Technical diagnostic of a fleet of vehicles using rough set theory


  • Sawicki, Piotr
  • Zak, Jacek


The paper presents a process of technical diagnostic applied to a fleet of vehicles utilized in the delivery system of express mail. It is focused on evaluation of diagnostic capacity of particular characteristics, reduction of a set of initially selected characteristics to a minimal and satisfactory subset, recognition of a technical condition of vehicles resulting in their condition-based classification. In addition, the decision rules facilitating technical diagnostic and management of a fleet of vehicles are generated and utilized. N-fold cross validation is applied to estimate the efficiency of the decision rules. The rough set theory is applied to support the diagnostic process of vehicles. Classical rough set (CRS) theory is compared with the dominance-based rough set (DRS) approach. The results of computational experiments for both approaches are compared.

Suggested Citation

  • Sawicki, Piotr & Zak, Jacek, 2009. "Technical diagnostic of a fleet of vehicles using rough set theory," European Journal of Operational Research, Elsevier, vol. 193(3), pages 891-903, March.
  • Handle: RePEc:eee:ejores:v:193:y:2009:i:3:p:891-903

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Greco, Salvatore & Matarazzo, Benedetto & Slowinski, Roman, 2001. "Rough sets theory for multicriteria decision analysis," European Journal of Operational Research, Elsevier, vol. 129(1), pages 1-47, February.
    2. R. Slowinski & C. Zopounidis, 1995. "Application of the Rough Set Approach to Evaluation of Bankruptcy Risk," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 4(1), pages 27-41, March.
    3. Azibi, R. & Vanderpooten, D., 2002. "Construction of rule-based assignment models," European Journal of Operational Research, Elsevier, vol. 138(2), pages 274-293, April.
    4. Dimitras, A. I. & Slowinski, R. & Susmaga, R. & Zopounidis, C., 1999. "Business failure prediction using rough sets," European Journal of Operational Research, Elsevier, vol. 114(2), pages 263-280, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Meisel, Stephan & Mattfeld, Dirk, 2010. "Synergies of Operations Research and Data Mining," European Journal of Operational Research, Elsevier, vol. 206(1), pages 1-10, October.
    2. repec:spr:annopr:v:250:y:2017:i:2:d:10.1007_s10479-015-2009-z is not listed on IDEAS
    3. Shyng, Jhieh-Yu & Shieh, How-Ming & Tzeng, Gwo-Hshiung & Hsieh, Shu-Huei, 2010. "Using FSBT technique with Rough Set Theory for personal investment portfolio analysis," European Journal of Operational Research, Elsevier, vol. 201(2), pages 601-607, March.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:193:y:2009:i:3:p:891-903. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.