IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v189y2008i3p1234-1253.html
   My bibliography  Save this article

An evolutionary approach to rehabilitation patient scheduling: A case study

Author

Listed:
  • Chien, Chen-Fu
  • Tseng, Fang-Pin
  • Chen, Chien-Hung

Abstract

Focusing on real settings, this study aimed to develop an evolutionary approach based on genetic algorithm for solving the problem of rehabilitation patient scheduling to increase service quality by reducing patient waiting time and improve operation efficiency by increasing the therapy equipment utilization. Indeed, due to partial precedence constraints of rehabilitation therapies, the problem can be structured as a hybrid shop scheduling problem that has received little attention to date. In addition, a mixed integer programming model was also constructed as a benchmark to validate the solution quality with small problems. Based on empirical data from a Medical Center in Taiwan, several experiments were conducted to estimate the validity of the proposed algorithm. The results showed that the proposed algorithm can reduce patient waiting time and enhance resource utilization and thus demonstrated the practicality of the proposed algorithm. Indeed, a decision support system embedded with the developed algorithm has been implemented in this medical center.

Suggested Citation

  • Chien, Chen-Fu & Tseng, Fang-Pin & Chen, Chien-Hung, 2008. "An evolutionary approach to rehabilitation patient scheduling: A case study," European Journal of Operational Research, Elsevier, vol. 189(3), pages 1234-1253, September.
  • Handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:1234-1253
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(07)00596-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raaymakers, W. H. M. & Hoogeveen, J. A., 2000. "Scheduling multipurpose batch process industries with no-wait restrictions by simulated annealing," European Journal of Operational Research, Elsevier, vol. 126(1), pages 131-151, October.
    2. Cheang, B. & Li, H. & Lim, A. & Rodrigues, B., 2003. "Nurse rostering problems--a bibliographic survey," European Journal of Operational Research, Elsevier, vol. 151(3), pages 447-460, December.
    3. Eugeniusz Nowicki & Czeslaw Smutnicki, 1996. "A Fast Taboo Search Algorithm for the Job Shop Problem," Management Science, INFORMS, vol. 42(6), pages 797-813, June.
    4. Ernst, A. T. & Jiang, H. & Krishnamoorthy, M. & Sier, D., 2004. "Staff scheduling and rostering: A review of applications, methods and models," European Journal of Operational Research, Elsevier, vol. 153(1), pages 3-27, February.
    5. Nicholas G. Hall & Chelliah Sriskandarajah, 1996. "A Survey of Machine Scheduling Problems with Blocking and No-Wait in Process," Operations Research, INFORMS, vol. 44(3), pages 510-525, June.
    6. Sartaj Sahni & Yookun Cho, 1979. "Complexity of Scheduling Shops with No Wait in Process," Mathematics of Operations Research, INFORMS, vol. 4(4), pages 448-457, November.
    7. Ridge, J. C. & Jones, S. K. & Nielsen, M. S. & Shahani, A. K., 1998. "Capacity planning for intensive care units," European Journal of Operational Research, Elsevier, vol. 105(2), pages 346-355, March.
    8. Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
    9. Ramudhin, Amar & Marier, Philippe, 1996. "The generalized Shifting Bottleneck Procedure," European Journal of Operational Research, Elsevier, vol. 93(1), pages 34-48, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marynissen, Joren & Demeulemeester, Erik, 2019. "Literature review on multi-appointment scheduling problems in hospitals," European Journal of Operational Research, Elsevier, vol. 272(2), pages 407-419.
    2. Nossack, Jenny, 2022. "Therapy scheduling and therapy planning at hospitals," Omega, Elsevier, vol. 109(C).
    3. Lizhong Zhao & Chen-Fu Chien & Mitsuo Gen, 2018. "A bi-objective genetic algorithm for intelligent rehabilitation scheduling considering therapy precedence constraints," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 973-988, June.
    4. Sebastian Kling & Sebastian Kraul & Jens O. Brunner, 2024. "Customized GRASP for rehabilitation therapy scheduling with appointment priorities and accounting for therapist satisfaction," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 821-872, September.
    5. Xiang Ma & Antoine Sauré & Martin L. Puterman & Marianne Taylor & Scott Tyldesley, 2016. "Capacity planning and appointment scheduling for new patient oncology consults," Health Care Management Science, Springer, vol. 19(4), pages 347-361, December.
    6. H. Romero & N. Dellaert & S. Geer & M. Frunt & M. Jansen-Vullers & G. Krekels, 2013. "Admission and capacity planning for the implementation of one-stop-shop in skin cancer treatment using simulation-based optimization," Health Care Management Science, Springer, vol. 16(1), pages 75-86, March.
    7. Yang, Xiaopeng & Zheng, Danheng & Sieminowski, Tammy & Paradi, Joseph C., 2015. "A dynamic benchmarking system for assessing the recovery of inpatients: Evidence from the neurorehabilitation process," European Journal of Operational Research, Elsevier, vol. 240(2), pages 582-591.
    8. Tsai, Pei-Fang Jennifer & Teng, Guei-Yu, 2014. "A stochastic appointment scheduling system on multiple resources with dynamic call-in sequence and patient no-shows for an outpatient clinic," European Journal of Operational Research, Elsevier, vol. 239(2), pages 427-436.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Schuster, 2006. "No-wait Job Shop Scheduling: Tabu Search and Complexity of Subproblems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 63(3), pages 473-491, July.
    2. Groflin, Heinz & Klinkert, Andreas, 2007. "Feasible insertions in job shop scheduling, short cycles and stable sets," European Journal of Operational Research, Elsevier, vol. 177(2), pages 763-785, March.
    3. Nikhil Bansal & Mohammad Mahdian & Maxim Sviridenko, 2005. "Minimizing Makespan in No-Wait Job Shops," Mathematics of Operations Research, INFORMS, vol. 30(4), pages 817-831, November.
    4. Zhu, Jie & Li, Xiaoping & Wang, Qian, 2009. "Complete local search with limited memory algorithm for no-wait job shops to minimize makespan," European Journal of Operational Research, Elsevier, vol. 198(2), pages 378-386, October.
    5. Ahmadian, Mohammad Mahdi & Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2021. "Four decades of research on the open-shop scheduling problem to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 295(2), pages 399-426.
    6. Naderi, B. & Zandieh, M., 2014. "Modeling and scheduling no-wait open shop problems," International Journal of Production Economics, Elsevier, vol. 158(C), pages 256-266.
    7. Philippe Lacomme & Aziz Moukrim & Alain Quilliot & Marina Vinot, 2019. "Integration of routing into a resource-constrained project scheduling problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 421-464, December.
    8. Vanhoucke, Mario & Maenhout, Broos, 2009. "On the characterization and generation of nurse scheduling problem instances," European Journal of Operational Research, Elsevier, vol. 196(2), pages 457-467, July.
    9. Young-Chae Hong & Amy Cohn & Stephen Gorga & Edmond O’Brien & William Pozehl & Jennifer Zank, 2019. "Using Optimization Techniques and Multidisciplinary Collaboration to Solve a Challenging Real-World Residency Scheduling Problem," Interfaces, INFORMS, vol. 49(3), pages 201-212, May.
    10. Lotfi Hidri & Achraf Gazdar & Mohammed M. Mabkhot, 2020. "Optimized Procedure to Schedule Physicians in an Intensive Care Unit: A Case Study," Mathematics, MDPI, vol. 8(11), pages 1-24, November.
    11. Damcı-Kurt, Pelin & Zhang, Minjiao & Marentay, Brian & Govind, Nirmal, 2019. "Improving physician schedules by leveraging equalization: Cases from hospitals in U.S," Omega, Elsevier, vol. 85(C), pages 182-193.
    12. Broos Maenhout & Mario Vanhoucke, 2008. "Comparison and hybridization of crossover operators for the nurse scheduling problem," Annals of Operations Research, Springer, vol. 159(1), pages 333-353, March.
    13. Lizhong Zhao & Chen-Fu Chien & Mitsuo Gen, 2018. "A bi-objective genetic algorithm for intelligent rehabilitation scheduling considering therapy precedence constraints," Journal of Intelligent Manufacturing, Springer, vol. 29(5), pages 973-988, June.
    14. Diarmuid Grimes & Emmanuel Hebrard, 2015. "Solving Variants of the Job Shop Scheduling Problem Through Conflict-Directed Search," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 268-284, May.
    15. Jain, A. S. & Meeran, S., 1999. "Deterministic job-shop scheduling: Past, present and future," European Journal of Operational Research, Elsevier, vol. 113(2), pages 390-434, March.
    16. Suk Ho Jin & Ho Yeong Yun & Suk Jae Jeong & Kyung Sup Kim, 2017. "Hybrid and Cooperative Strategies Using Harmony Search and Artificial Immune Systems for Solving the Nurse Rostering Problem," Sustainability, MDPI, vol. 9(7), pages 1-19, June.
    17. Yang-Kuei Lin & Chin Soon Chong, 2017. "Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 28(5), pages 1189-1201, June.
    18. Raaymakers, W. H. M. & Hoogeveen, J. A., 2000. "Scheduling multipurpose batch process industries with no-wait restrictions by simulated annealing," European Journal of Operational Research, Elsevier, vol. 126(1), pages 131-151, October.
    19. Giaro, Krzysztof, 2001. "NP-hardness of compact scheduling in simplified open and flow shops," European Journal of Operational Research, Elsevier, vol. 130(1), pages 90-98, April.
    20. Alvarez-Valdes, R. & Fuertes, A. & Tamarit, J. M. & Gimenez, G. & Ramos, R., 2005. "A heuristic to schedule flexible job-shop in a glass factory," European Journal of Operational Research, Elsevier, vol. 165(2), pages 525-534, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:189:y:2008:i:3:p:1234-1253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.