IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v153y2004i3p661-674.html
   My bibliography  Save this article

Solving fuzzy transportation problems based on extension principle

Author

Listed:
  • Liu, Shiang-Tai
  • Kao, Chiang

Abstract

No abstract is available for this item.

Suggested Citation

  • Liu, Shiang-Tai & Kao, Chiang, 2004. "Solving fuzzy transportation problems based on extension principle," European Journal of Operational Research, Elsevier, vol. 153(3), pages 661-674, March.
  • Handle: RePEc:eee:ejores:v:153:y:2004:i:3:p:661-674
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(02)00731-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. E. Bellman & L. A. Zadeh, 1970. "Decision-Making in a Fuzzy Environment," Management Science, INFORMS, vol. 17(4), pages 141-164, December.
    2. Arenas Parra, M. & Bilbao Terol, A. & Rodriguez Uria, M. V., 1999. "Solving the multiobjective possibilistic linear programming problem," European Journal of Operational Research, Elsevier, vol. 117(1), pages 175-182, August.
    3. Luhandjula, M. K., 1987. "Linear programming with a possibilistic objective function," European Journal of Operational Research, Elsevier, vol. 31(1), pages 110-117, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Srikant Gupta & Irfan Ali & Aquil Ahmed, 2018. "Multi-objective capacitated transportation problem with mixed constraint: a case study of certain and uncertain environment," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 447-477, June.
    2. Peidro, David & Mula, Josefa & Jiménez, Mariano & del Mar Botella, Ma, 2010. "A fuzzy linear programming based approach for tactical supply chain planning in an uncertainty environment," European Journal of Operational Research, Elsevier, vol. 205(1), pages 65-80, August.
    3. Sadegh Niroomand & Ali Mahmoodirad & Ahmad Heydari & Fatemeh Kardani & Abdollah Hadi-Vencheh, 2017. "An extension principle based solution approach for shortest path problem with fuzzy arc lengths," Operational Research, Springer, vol. 17(2), pages 395-411, July.
    4. S. Dutta & S. Acharya & Rajashree Mishra, 2016. "Genetic algorithm based fuzzy stochastic transportation programming problem with continuous random variables," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 835-872, December.
    5. Bogdana Stanojević & Sorin Nǎdǎban, 2023. "Empiric Solutions to Full Fuzzy Linear Programming Problems Using the Generalized “min” Operator," Mathematics, MDPI, vol. 11(23), pages 1-15, December.
    6. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    7. Ali Ebrahimnejad, 2015. "A duality approach for solving bounded linear programming problems with fuzzy variables based on ranking functions and its application in bounded transportation problems," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(11), pages 2048-2060, August.
    8. Srikant Gupta & Irfan Ali & Aquil Ahmed, 2018. "Multi-objective bi-level supply chain network order allocation problem under fuzziness," OPSEARCH, Springer;Operational Research Society of India, vol. 55(3), pages 721-748, November.
    9. Amit Kumar & Amarpreet Kaur, 2011. "Application of classical transportation methods to find the fuzzy optimal solution of fuzzy transportation problems," Fuzzy Information and Engineering, Springer, vol. 3(1), pages 81-99, March.
    10. Sharma, Dinesh K. & Jana, R.K., 2009. "A hybrid genetic algorithm model for transshipment management decisions," International Journal of Production Economics, Elsevier, vol. 122(2), pages 703-713, December.
    11. Prachi Agrawal & Talari Ganesh, 2020. "Fuzzy fractional stochastic transportation problem involving exponential distribution," OPSEARCH, Springer;Operational Research Society of India, vol. 57(4), pages 1093-1114, December.
    12. Jie Wei & Jing Zhao, 2016. "Pricing decisions for substitutable products with horizontal and vertical competition in fuzzy environments," Annals of Operations Research, Springer, vol. 242(2), pages 505-528, July.
    13. Priyanka Nagar & Pankaj Kumar Srivastava & Amit Srivastava, 2022. "A new dynamic score function approach to optimize a special class of Pythagorean fuzzy transportation problem," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 904-913, June.
    14. Allahviranloo, Mahdieh & Afandizadeh, Shahriar, 2008. "Investment optimization on port's development by fuzzy integer programming," European Journal of Operational Research, Elsevier, vol. 186(1), pages 423-434, April.
    15. Jung-Lin Hung & Cheng-Che Chen & Chun-Mei Lai, 2020. "Possibility Measure of Accepting Statistical Hypothesis," Mathematics, MDPI, vol. 8(4), pages 1-16, April.
    16. Mohammed, Ahmed & Wang, Qian, 2017. "The fuzzy multi-objective distribution planner for a green meat supply chain," International Journal of Production Economics, Elsevier, vol. 184(C), pages 47-58.
    17. Zhao, Jing & Tang, Wansheng & Zhao, Ruiqing & Wei, Jie, 2012. "Pricing decisions for substitutable products with a common retailer in fuzzy environments," European Journal of Operational Research, Elsevier, vol. 216(2), pages 409-419.
    18. Islam, Sahidul & Roy, Tapan Kumar, 2006. "A new fuzzy multi-objective programming: Entropy based geometric programming and its application of transportation problems," European Journal of Operational Research, Elsevier, vol. 173(2), pages 387-404, September.
    19. Liu, Shiang-Tai, 2009. "A revisit to quadratic programming with fuzzy parameters," Chaos, Solitons & Fractals, Elsevier, vol. 41(3), pages 1401-1407.
    20. Chia-Nan Wang & Thanh-Tuan Dang & Tran Quynh Le & Panitan Kewcharoenwong, 2020. "Transportation Optimization Models for Intermodal Networks with Fuzzy Node Capacity, Detour Factor, and Vehicle Utilization Constraints," Mathematics, MDPI, vol. 8(12), pages 1-27, November.
    21. Liu, Shiang-Tai, 2009. "Quadratic programming with fuzzy parameters: A membership function approach," Chaos, Solitons & Fractals, Elsevier, vol. 40(1), pages 237-245.
    22. Wong, Bo K. & Lai, Vincent S., 2011. "A survey of the application of fuzzy set theory in production and operations management: 1998-2009," International Journal of Production Economics, Elsevier, vol. 129(1), pages 157-168, January.
    23. Dayi He & Ran Li & Qi Huang & Ping Lei, 2014. "Transportation Optimization with Fuzzy Trapezoidal Numbers Based on Possibility Theory," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-12, August.
    24. Jiuping Xu & Guomin Fang & Zezhong Wu, 2016. "Network equilibrium of production, transportation and pricing for multi-product multi-market," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(3), pages 567-595, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vuciterna, Rina & Thomsen, Michael & Popp, Jennie & Musliu, Arben, 2017. "Efficiency and Competitiveness of Kosovo Raspberry Producers," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252770, Southern Agricultural Economics Association.
    2. Berna Tektas Sivrikaya & Ferhan Cebi & Hasan Hüseyin Turan & Nihat Kasap & Dursun Delen, 2017. "A fuzzy long-term investment planning model for a GenCo in a hybrid electricity market considering climate change impacts," Information Systems Frontiers, Springer, vol. 19(5), pages 975-991, October.
    3. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    4. Kim, Jong Soon & Whang, Kyu-Seung, 1998. "A tolerance approach to the fuzzy goal programming problems with unbalanced triangular membership function," European Journal of Operational Research, Elsevier, vol. 107(3), pages 614-624, June.
    5. Berna Tektaş & Hasan Hüseyin Turan & Nihat Kasap & Ferhan Çebi & Dursun Delen, 2022. "A Fuzzy Prescriptive Analytics Approach to Power Generation Capacity Planning," Energies, MDPI, vol. 15(9), pages 1-26, April.
    6. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    7. Víctor G. Alfaro-García & Anna M. Gil-Lafuente & Gerardo G. Alfaro Calderón, 2017. "A fuzzy approach to a municipality grouping model towards creation of synergies," Computational and Mathematical Organization Theory, Springer, vol. 23(3), pages 391-408, September.
    8. Aghayi, Nazila & Maleki, Bentolhoda, 2016. "Efficiency measurement of DMUs with undesirable outputs under uncertainty based on the directional distance function: Application on bank industry," Energy, Elsevier, vol. 112(C), pages 376-387.
    9. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    10. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    11. Mikhailov, L., 2004. "A fuzzy approach to deriving priorities from interval pairwise comparison judgements," European Journal of Operational Research, Elsevier, vol. 159(3), pages 687-704, December.
    12. Hongyi Sun & Bingqian Zhang & Wenbin Ni, 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection," Mathematics, MDPI, vol. 10(19), pages 1-19, September.
    13. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    14. Sakawa, Masatoshi & Kato, Kosuke, 1998. "An interactive fuzzy satisficing method for structured multiobjective linear fractional programs with fuzzy numbers," European Journal of Operational Research, Elsevier, vol. 107(3), pages 575-589, June.
    15. Sajid Ali & Sang-Moon Lee & Choon-Man Jang, 2017. "Determination of the Most Optimal On-Shore Wind Farm Site Location Using a GIS-MCDM Methodology: Evaluating the Case of South Korea," Energies, MDPI, vol. 10(12), pages 1-22, December.
    16. David Opresnik & Maurizio Fiasché & Marco Taisch & Manuel Hirsch, 0. "An evolving fuzzy inference system for extraction of rule set for planning a product–service strategy," Information Technology and Management, Springer, vol. 0, pages 1-17.
    17. Bogdana Stanojević & Milan Stanojević & Sorin Nădăban, 2021. "Reinstatement of the Extension Principle in Approaching Mathematical Programming with Fuzzy Numbers," Mathematics, MDPI, vol. 9(11), pages 1-16, June.
    18. Svajone Bekesiene & Serhii Mashchenko, 2023. "On Nash Equilibria in a Finite Game for Fuzzy Sets of Strategies," Mathematics, MDPI, vol. 11(22), pages 1-12, November.
    19. V. Alpagut Yavuz, 2016. "An Analysis of Job Change Decision Using a Hybrid Mcdm Method: A Comparative Analysis," International Journal of Business and Social Research, MIR Center for Socio-Economic Research, vol. 6(3), pages 60-75, March.
    20. Qian-Yun Tan & Cui-Ping Wei & Qi Liu & Xiang-Qian Feng, 2016. "The Hesitant Fuzzy Linguistic TOPSIS Method Based on Novel Information Measures," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 33(05), pages 1-22, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:153:y:2004:i:3:p:661-674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.