IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v34y2025icp109-119.html
   My bibliography  Save this article

Sufficient Dimension Reduction for Poisson Regression

Author

Listed:
  • Liu, Jianxuan

Abstract

Poisson regression is popular and commonly employed to analyze frequency of occurrences in a fixed amount of time. In practice, data collected from many scientific disciplines tend to grow in both volume and complexity. One characteristic of such complexity is the inherent sparsity in high-dimensional covariates space. Sufficient dimension reduction (SDR) is known to be an effective cure for its advantage of making use of all available covariates. Existing SDR techniques for a continuous or binary response do not naturally extend to count response data. It is challenging to detect the dependency between the response variable and the covariates due to the curse of dimensionality. To bridge the gap between SDR and its applications in count response models, an efficient estimating procedure is developed to recover the central subspace through estimating a finite dimensional parameter in a semiparametric model. The proposed model is flexible which does not require model assumption on the conditional mean or multivariate normality assumption on covariates. The resulting estimators achieve optimal semiparametric efficiency without imposing linearity or constant variance assumptions. The finite sample performance of the estimators is examined via simulations, and the proposed method is further demonstrated in the baseball hitter example and pathways to desistance study.

Suggested Citation

  • Liu, Jianxuan, 2025. "Sufficient Dimension Reduction for Poisson Regression," Econometrics and Statistics, Elsevier, vol. 34(C), pages 109-119.
  • Handle: RePEc:eee:ecosta:v:34:y:2025:i:c:p:109-119
    DOI: 10.1016/j.ecosta.2022.09.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S245230622200082X
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2022.09.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:34:y:2025:i:c:p:109-119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.