IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v508y2025ics0304380025002315.html

Exploring multistability in marine ecosystems: Insights from food web model dynamics

Author

Listed:
  • Frank, A.S.
  • Pinke, Andrea
  • Read, Elizabeth
  • Röblitz, Susanna
  • Sadhu, Susmita
  • Subbey, Sam

Abstract

This review synthesizes the role of multistability in deterministic food web models of marine ecosystems, focusing on how structural features of ordinary differential equation (ODE) models give rise to multiple stable states. From an initial pool of 178 publications, we systematically selected 35 studies that explicitly report multistability in predator–prey and food web models. These were analyzed according to key structural components – such as functional responses, growth and mortality terms, nonlinearities, and network topologies – to identify the mechanisms underpinning the emergence of bistability, tristability, and higher-order multistability.

Suggested Citation

  • Frank, A.S. & Pinke, Andrea & Read, Elizabeth & Röblitz, Susanna & Sadhu, Susmita & Subbey, Sam, 2025. "Exploring multistability in marine ecosystems: Insights from food web model dynamics," Ecological Modelling, Elsevier, vol. 508(C).
  • Handle: RePEc:eee:ecomod:v:508:y:2025:i:c:s0304380025002315
    DOI: 10.1016/j.ecolmodel.2025.111245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380025002315
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2025.111245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Anje-Margriet Neutel & Johan A. P. Heesterbeek & Johan van de Koppel & Guido Hoenderboom & An Vos & Coen Kaldeway & Frank Berendse & Peter C. de Ruiter, 2007. "Reconciling complexity with stability in naturally assembling food webs," Nature, Nature, vol. 449(7162), pages 599-602, October.
    2. Kevin Shear McCann, 2000. "The diversity–stability debate," Nature, Nature, vol. 405(6783), pages 228-233, May.
    3. Zhang, Shengqiang & Yuan, Sanling & Zhang, Tonghua, 2022. "A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    4. D. Montoya & M.L. Yallop & J. Memmott, 2015. "Functional group diversity increases with modularity in complex food webs," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    5. Riley, Tanya G & Mouat, Beth & Shucksmith, Rachel, 2024. "Real world data for real world problems: Importance of appropriate spatial resolution modelling to inform decision makers in marine management," Ecological Modelling, Elsevier, vol. 498(C).
    6. Hossain, Mainul & Kumbhakar, Ruma & Pal, Nikhil, 2022. "Dynamics in the biparametric spaces of a three-species food chain model with vigilance," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    7. Marten Scheffer & Steve Carpenter & Jonathan A. Foley & Carl Folke & Brian Walker, 2001. "Catastrophic shifts in ecosystems," Nature, Nature, vol. 413(6856), pages 591-596, October.
    8. E. L. Berlow, 1999. "Strong effects of weak interactions in ecological communities," Nature, Nature, vol. 398(6725), pages 330-334, March.
    9. Chowdhury, Pranali Roy & Banerjee, Malay & Petrovskii, Sergei, 2023. "Coexistence of chaotic and non-chaotic attractors in a three-species slow–fast system," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    10. Tomás Ignacio Marina & Leonardo A Saravia & Georgina Cordone & Vanesa Salinas & Santiago R Doyle & Fernando R Momo, 2018. "Architecture of marine food webs: To be or not be a ‘small-world’," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-13, May.
    11. Richard J. Williams & Neo D. Martinez, 2000. "Simple rules yield complex food webs," Nature, Nature, vol. 404(6774), pages 180-183, March.
    12. Kevin McCann & Alan Hastings & Gary R. Huxel, 1998. "Weak trophic interactions and the balance of nature," Nature, Nature, vol. 395(6704), pages 794-798, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Scotti, Marco & Bondavalli, Cristina & Bodini, Antonio, 2009. "Linking trophic positions and flow structure constraints in ecological networks: Energy transfer efficiency or topology effect?," Ecological Modelling, Elsevier, vol. 220(21), pages 3070-3080.
    2. Zhang, Zhibin & Yan, Chuan & Krebs, Charles J. & Stenseth, Nils Chr., 2015. "Ecological non-monotonicity and its effects on complexity and stability of populations, communities and ecosystems," Ecological Modelling, Elsevier, vol. 312(C), pages 374-384.
    3. Nonaka, Etsuko & Kuparinen, Anna, 2023. "Limited effects of size-selective harvesting and harvesting-induced life-history changes on the temporal variability of biomass dynamics in complex food webs," Ecological Modelling, Elsevier, vol. 476(C).
    4. Sandra Hervías-Parejo & Mar Cuevas-Blanco & Lucas Lacasa & Anna Traveset & Isabel Donoso & Ruben Heleno & Manuel Nogales & Susana Rodríguez-Echeverría & Carlos J. Melián & Victor M. Eguíluz, 2024. "On the structure of species-function participation in multilayer ecological networks," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    5. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.
    6. Wang, Shuran Cindy & Liu, Xueqin & Liu, Yong & Wang, Hongzhu, 2020. "Benthic-pelagic coupling in lake energetic food webs," Ecological Modelling, Elsevier, vol. 417(C).
    7. Zhang, Chongliang & Chen, Yong & Ren, Yiping, 2016. "The efficacy of fisheries closure in rebuilding depleted stocks: Lessons from size-spectrum modeling," Ecological Modelling, Elsevier, vol. 332(C), pages 59-66.
    8. Giacomini, Henrique Corrêa & De Marco, Paulo & Petrere, Miguel, 2009. "Exploring community assembly through an individual-based model for trophic interactions," Ecological Modelling, Elsevier, vol. 220(1), pages 23-39.
    9. repec:plo:pcbi00:1005988 is not listed on IDEAS
    10. Yuguang Yang & Katharine Z. Coyte & Kevin R. Foster & Aming Li, 2023. "Reactivity of complex communities can be more important than stability," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Halnes, Geir & Fath, Brian D. & Liljenström, Hans, 2007. "The modified niche model: Including detritus in simple structural food web models," Ecological Modelling, Elsevier, vol. 208(1), pages 9-16.
    12. repec:plo:pone00:0041057 is not listed on IDEAS
    13. Richard J. Williams & Neo D. Martinez, 2001. "Stabilization of Chaotic and Non-Permanent Food Web Dynamics," Working Papers 01-07-037, Santa Fe Institute.
    14. Fabio Pranovi & Gianluca Sarà & Piero Franzoi, 2013. "Valuing the Unmarketable: An Ecological Approach to the Externalities Estimate in Fishing Activities," Sustainability, MDPI, vol. 5(2), pages 1-11, February.
    15. repec:plo:pone00:0229927 is not listed on IDEAS
    16. Lin, Yangchen & Sutherland, William J., 2013. "Color and degree of interspecific synchrony of environmental noise affect the variability of complex ecological networks," Ecological Modelling, Elsevier, vol. 263(C), pages 162-173.
    17. Frossard, Victor & Rimet, Frédéric & Perga, Marie-Elodie, 2018. "Causal networks reveal the dominance of bottom-up interactions in large, deep lakes," Ecological Modelling, Elsevier, vol. 368(C), pages 136-146.
    18. Ian Hodge & William M. Adams, 2016. "Short-Term Projects versus Adaptive Governance: Conflicting Demands in the Management of Ecological Restoration," Land, MDPI, vol. 5(4), pages 1-17, November.
    19. Chunming Li & Jianshe Chen & Xiaolin Liao & Aaron P. Ramus & Christine Angelini & Lingli Liu & Brian R. Silliman & Mark D. Bertness & Qiang He, 2023. "Shorebirds-driven trophic cascade helps restore coastal wetland multifunctionality," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    20. Jenerette, G. Darrel & Lal, Rattan, 2007. "Modeled carbon sequestration variation in a linked erosion–deposition system," Ecological Modelling, Elsevier, vol. 200(1), pages 207-216.
    21. Rustici, M. & Ceccherelli, G. & Piazzi, L., 2017. "Predator exploitation and sea urchin bistability: Consequence on benthic alternative states," Ecological Modelling, Elsevier, vol. 344(C), pages 1-5.
    22. Rodrigues, João & Domingos, Tiago & Conceição, Pedro & Belbute, José, 2005. "Constraints on dematerialisation and allocation of natural capital along a sustainable growth path," Ecological Economics, Elsevier, vol. 54(4), pages 382-396, September.
    23. Xu Luo & Hong S. He & Yu Liang & Jacob S. Fraser & Jialin Li, 2018. "Mitigating the Effects of Climate Change through Harvesting and Planting in Boreal Forests of Northeastern China," Sustainability, MDPI, vol. 10(10), pages 1-20, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:508:y:2025:i:c:s0304380025002315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.