IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v508y2025ics0304380025002248.html

Invaders’ trophic position and their direct and indirect relationship influence on resident food webs

Author

Listed:
  • Móréh, Ágnes
  • Scheuring, István

Abstract

Many ecosystems are undergoing simultaneous colonization and spread of multiple alien species. Invaders often negatively affect communities by reducing population sizes of resident species or even decreasing community diversity through extinctions. Direct and indirect interactions between them can amplify or mitigate their impacts on native communities. In this study, we compare the effects of two invaders on the resident model food webs under two scenarios: separate versus simultaneous invasion.

Suggested Citation

  • Móréh, Ágnes & Scheuring, István, 2025. "Invaders’ trophic position and their direct and indirect relationship influence on resident food webs," Ecological Modelling, Elsevier, vol. 508(C).
  • Handle: RePEc:eee:ecomod:v:508:y:2025:i:c:s0304380025002248
    DOI: 10.1016/j.ecolmodel.2025.111238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380025002248
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2025.111238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Jordán, Ferenc & Benedek, Zsófia & Podani, János, 2007. "Quantifying positional importance in food webs: A comparison of centrality indices," Ecological Modelling, Elsevier, vol. 205(1), pages 270-275.
    2. Karen De Roy & Massimo Marzorati & Andrea Negroni & Olivier Thas & Annalisa Balloi & Fabio Fava & Willy Verstraete & Daniele Daffonchio & Nico Boon, 2013. "Environmental conditions and community evenness determine the outcome of biological invasion," Nature Communications, Nature, vol. 4(1), pages 1-5, June.
    3. Móréh, Ágnes & Endrédi, Anett & Piross, Sándor Imre & Jordán, Ferenc, 2021. "Topology of additive pairwise effects in food webs," Ecological Modelling, Elsevier, vol. 440(C).
    4. Phillip Cassey & Steven Delean & Julie L Lockwood & Jason S Sadowski & Tim M Blackburn, 2018. "Dissecting the null model for biological invasions: A meta-analysis of the propagule pressure effect," PLOS Biology, Public Library of Science, vol. 16(4), pages 1-15, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Móréh, Ágnes & Jordán, Ferenc & Scheuring, István, 2024. "Effects of joint invasion: How co-invaders affect each other's success in model food webs?," Ecological Modelling, Elsevier, vol. 492(C).
    2. Torres-Alruiz, Maria Daniela & Rodríguez, Diego J., 2013. "A topo-dynamical perspective to evaluate indirect interactions in trophic webs: New indexes," Ecological Modelling, Elsevier, vol. 250(C), pages 363-369.
    3. Jordán, Ferenc, 2022. "The network perspective: Vertical connections linking organizational levels," Ecological Modelling, Elsevier, vol. 473(C).
    4. Jordán, Ferenc & Liu, Wei-chung & Mike, Ágnes, 2009. "Trophic field overlap: A new approach to quantify keystone species," Ecological Modelling, Elsevier, vol. 220(21), pages 2899-2907.
    5. Jordán, Ferenc & Osváth, Györgyi, 2009. "The sensitivity of food web topology to temporal data aggregation," Ecological Modelling, Elsevier, vol. 220(22), pages 3141-3146.
    6. Gao, Cai & Wei, Daijun & Hu, Yong & Mahadevan, Sankaran & Deng, Yong, 2013. "A modified evidential methodology of identifying influential nodes in weighted networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(21), pages 5490-5500.
    7. Xiaozhou Ye & Or Shalev & Christoph Ratzke, 2025. "Biotic resistance predictably shifts microbial invasion regimes," Nature Communications, Nature, vol. 16(1), pages 1-14, December.
    8. Yadid M. Algavi & Elhanan Borenstein, 2024. "Relative dispersion ratios following fecal microbiota transplant elucidate principles governing microbial migration dynamics," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    9. Yiming Li & Tim M. Blackburn & Zexu Luo & Tianjian Song & Freyja Watters & Wenhao Li & Teng Deng & Zhenhua Luo & Yuanyi Li & Jiacong Du & Meiling Niu & Jun Zhang & Jinyu Zhang & Jiaxue Yang & Siqi Wan, 2023. "Quantifying global colonization pressures of alien vertebrates from wildlife trade," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Cai Gao & Xin Lan & Xiaoge Zhang & Yong Deng, 2013. "A Bio-Inspired Methodology of Identifying Influential Nodes in Complex Networks," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-11, June.
    11. De Montis, Andrea & Ganciu, Amedeo & Cabras, Matteo & Bardi, Antonietta & Mulas, Maurizio, 2019. "Comparative ecological network analysis: An application to Italy," Land Use Policy, Elsevier, vol. 81(C), pages 714-724.
    12. Senka Čaušević & Manupriyam Dubey & Marian Morales & Guillem Salazar & Vladimir Sentchilo & Nicolas Carraro & Hans-Joachim Ruscheweyh & Shinichi Sunagawa & Jan Roelof van der Meer, 2024. "Niche availability and competitive loss by facilitation control proliferation of bacterial strains intended for soil microbiome interventions," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    13. Abbasi, Eeman & Akçay, Erol, 2024. "Host control and species interactions jointly determine microbiome community structure," Theoretical Population Biology, Elsevier, vol. 158(C), pages 185-194.
    14. Almpanidou, Vasiliki & Mazaris, Antonios D. & Mertzanis, Yorgos & Avraam, Ioannis & Antoniou, Ioannis & Pantis, John D. & Sgardelis, Stefanos P., 2014. "Providing insights on habitat connectivity for male brown bears: A combination of habitat suitability and landscape graph-based models," Ecological Modelling, Elsevier, vol. 286(C), pages 37-44.
    15. Angelini, Ronaldo & de Morais, Ronny José & Catella, Agostinho Carlos & Resende, Emiko Kawakami & Libralato, Simone, 2013. "Aquatic food webs of the oxbow lakes in the Pantanal: A new site for fisheries guaranteed by alternated control?," Ecological Modelling, Elsevier, vol. 253(C), pages 82-96.
    16. Losapio, Gianalberto & Jordán, Ferenc & Caccianiga, Marco & Gobbi, Mauro, 2015. "Structure-dynamic relationship of plant–insect networks along a primary succession gradient on a glacier foreland," Ecological Modelling, Elsevier, vol. 314(C), pages 73-79.
    17. Stefano Allesina & Mercedes Pascual, 2009. "Googling Food Webs: Can an Eigenvector Measure Species' Importance for Coextinctions?," PLOS Computational Biology, Public Library of Science, vol. 5(9), pages 1-6, September.
    18. Jordán, Ferenc & Okey, Thomas A. & Bauer, Barbara & Libralato, Simone, 2008. "Identifying important species: Linking structure and function in ecological networks," Ecological Modelling, Elsevier, vol. 216(1), pages 75-80.
    19. Livi, Carmen Maria & Jordán, Ferenc & Lecca, Paola & Okey, Thomas A., 2011. "Identifying key species in ecosystems with stochastic sensitivity analysis," Ecological Modelling, Elsevier, vol. 222(14), pages 2542-2551.
    20. Ewers, Robert M. & Cook, Jacob & Daniel, Olivia Z. & Orme, C.David L. & Groner, Vivienne & Joshi, Jaideep & Rallings, Anna & Rallings, Taran & Amarasekare, Priyanga, 2024. "New insights to be gained from a Virtual Ecosystem," Ecological Modelling, Elsevier, vol. 498(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:508:y:2025:i:c:s0304380025002248. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.