IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v504y2025ics0304380025000626.html

A comparative analysis of univariate and multivariate spatial requirements modeling for habitat selection in freshwater fish: A case study of Oxynoemacheilus bergianus in the Jajroud River, Iran and implications for conservation and management

Author

Listed:
  • Mahmoudi, Saleh
  • Abdoli, Asghar

Abstract

Understanding the habitat requirements for fish in fluvial ecosystems is a key factor in conservation and making decisions for management. One of the main questions is what are the optimal ranges for each variable-velocity, depth, and substrate structure-that the species requires, and how do these ranges influence its development and survival? Given the scarcity of biological and ecological information on Oxynoemacheilus bergianus habitat selection at the mesoscale, this survey was designed to provide an answer to the aforementioned question. For this purpose, the effects of three main variables, including flow velocity, water depth, and substrate composition on the habitat selection of the species in a lotic ecosystem in northern Iran were evaluated. The results indicate that for the juvenile group, depths up to 20 cm, velocities of 15–20 cm.s-1, and a dominant substrate of fine and medium gravel are the most suitable ranges. For the adult group, depths of 20–30 cm, velocities of 15–30 cm.s-1, and small cobbles are preferred We addressed these questions using both univariate and multivariate approaches, which resulted in different variable importance, model accuracy, and uncertainty across methods. Specifically, flow velocity was identified as the most significant variable in the univariate analysis. The depth variable was more important in the multivariate approach. The minimum method (MI) and the arithmetic mean (AM) method had the lowest and highest error and uncertainty among the combined methods, respectively. The Generalized Linear Models (GLM) and Random Forest Models (RF) approaches showed the most accurate models in the Species Distribution Models (SDMs) for juvenile and adult groups, respectively. Utilizing these vital results will empower managers to make informed decisions aimed at conserving O. bergianus, ultimately leading to effective strategies that protect its habitat and ensure the species' long-term survival.

Suggested Citation

  • Mahmoudi, Saleh & Abdoli, Asghar, 2025. "A comparative analysis of univariate and multivariate spatial requirements modeling for habitat selection in freshwater fish: A case study of Oxynoemacheilus bergianus in the Jajroud River, Iran and i," Ecological Modelling, Elsevier, vol. 504(C).
  • Handle: RePEc:eee:ecomod:v:504:y:2025:i:c:s0304380025000626
    DOI: 10.1016/j.ecolmodel.2025.111076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380025000626
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2025.111076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hallgren, W. & Santana, F. & Low-Choy, S. & Zhao, Y. & Mackey, B., 2019. "Species distribution models can be highly sensitive to algorithm configuration," Ecological Modelling, Elsevier, vol. 408(C), pages 1-1.
    2. Kaveh Madani, 2014. "Water management in Iran: what is causing the looming crisis?," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 4(4), pages 315-328, December.
    3. Fukuda, Shinji & Hiramatsu, Kazuaki, 2008. "Prediction ability and sensitivity of artificial intelligence-based habitat preference models for predicting spatial distribution of Japanese medaka (Oryzias latipes)," Ecological Modelling, Elsevier, vol. 215(4), pages 301-313.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. GhassemiSahebi, Fakhroddin & Mohammadrezapour, Omolbani & Delbari, Masoomeh & KhasheiSiuki, Abbas & Ritzema, Henk & Cherati, Ali, 2020. "Effect of utilization of treated wastewater and seawater with Clinoptilolite-Zeolite on yield and yield components of sorghum," Agricultural Water Management, Elsevier, vol. 234(C).
    2. Kosari, Sina & Parsinejad, Masoud & Mokhtaran, Ali & Zebardast, Shahram, 2024. "Predicted feasibility and economic return of drainage water recycling in an arid region," Agricultural Water Management, Elsevier, vol. 302(C).
    3. Zamani, Omid & Azadi, Hossein & Mortazavi, Seyed Abolghasem & Balali, Hamid & Moghaddam, Saghi Movahhed & Jurik, Lubos, 2021. "The impact of water-pricing policies on water productivity: Evidence of agriculture sector in Iran," Agricultural Water Management, Elsevier, vol. 245(C).
    4. Nazemi, Neda & Foley, Rider W. & Louis, Garrick & Keeler, Lauren Withycombe, 2020. "Divergent agricultural water governance scenarios: The case of Zayanderud basin, Iran," Agricultural Water Management, Elsevier, vol. 229(C).
    5. Kaveh Madani, 2021. "Have International Sanctions Impacted Iran’s Environment?," World, MDPI, vol. 2(2), pages 1-22, April.
    6. Forough Jafary & Chris Bradley, 2018. "Groundwater Irrigation Management and the Existing Challenges from the Farmers’ Perspective in Central Iran," Land, MDPI, vol. 7(1), pages 1-21, January.
    7. Momeni, Marzieh & Zakeri, Zahra & Esfandiari, Mojtaba & Behzadian, Kourosh & Zahedi, Sina & Razavi, Vahid, 2019. "Comparative analysis of agricultural water pricing between Azarbaijan Provinces in Iran and the state of California in the US: A hydro-economic approach," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    8. Muhammad Kamangar & Ozgur Kisi & Masoud Minaei, 2023. "Spatio-Temporal Analysis of Carbon Sequestration in Different Ecosystems of Iran and Its Relationship with Agricultural Droughts," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    9. Mehri Abdi-Dehkordi & Omid Bozorg-Haddad & Abdolrahim Salavitabar & Erfan Goharian, 2021. "Developing a sustainability assessment framework for integrated management of water resources systems using distributed zoning and system dynamics approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(11), pages 16246-16282, November.
    10. Jalal Mirnezami, S. & Molle, François & Talebi Eskandari, Soroush, 2024. "Chronicle of a disaster foretold: The politics of restoring Lake Urmia (Iran)," World Development, Elsevier, vol. 182(C).
    11. Majid Mohammadi & Saeed Farzin & Sayed-Farhad Mousavi & Hojat Karami, 2019. "Investigation of a New Hybrid Optimization Algorithm Performance in the Optimal Operation of Multi-Reservoir Benchmark Systems," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(14), pages 4767-4782, November.
    12. Alireza Taghdisian & Sandra G. F. Bukkens & Mario Giampietro, 2022. "A Societal Metabolism Approach to Effectively Analyze the Water–Energy–Food Nexus in an Agricultural Transboundary River Basin," Sustainability, MDPI, vol. 14(15), pages 1-25, July.
    13. Savari, Moslem & Ghezi, Mohammadamin & Molavi, Homa, 2025. "Social capital and behavioral response to water scarcity: Sustainable agriculture policies pathways for adopting dry direct-seeded rice," Agricultural Water Management, Elsevier, vol. 313(C).
    14. Nouri, Milad & Homaee, Mehdi & Pereira, Luis S. & Bybordi, Mohammad, 2023. "Water management dilemma in the agricultural sector of Iran: A review focusing on water governance," Agricultural Water Management, Elsevier, vol. 288(C).
    15. Shiva Noori & Gijsbert Korevaar & Andrea Ramirez Ramirez, 2020. "Institutional Lens upon Industrial Symbiosis Dynamics: The case of Persian Gulf Mining and Metal Industries Special Economic Zone," Sustainability, MDPI, vol. 12(15), pages 1-20, July.
    16. Rouzaneh, Davoud & Yazdanpanah, Masoud & Jahromi, Arman Bakhshi, 2021. "Evaluating micro-irrigation system performance through assessment of farmers' satisfaction: implications for adoption, longevity, and water use efficiency," Agricultural Water Management, Elsevier, vol. 246(C).
    17. Broussin, Joséphine & Mouchet, Maud & Goberville, Eric, 2024. "Generating pseudo-absences in the ecological space improves the biological relevance of response curves in species distribution models," Ecological Modelling, Elsevier, vol. 498(C).
    18. World Bank, 2017. "Iran Economic Monitor, Spring 2017," World Bank Publications - Reports 27556, The World Bank Group.
    19. Doğan, Buhari & Ghosh, Sudeshna & Hoang, Dung Phuong & Chu, Lan Khanh, 2022. "Are economic complexity and eco-innovation mutually exclusive to control energy demand and environmental quality in E7 and G7 countries?," Technology in Society, Elsevier, vol. 68(C).
    20. Mohammad Reza Farzanegan & Mehdi Feizi & Hassan F. Gholipour, 2019. "Drought and Property Prices: Empirical Evidence from Iran," MAGKS Papers on Economics 201916, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:504:y:2025:i:c:s0304380025000626. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.