IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v498y2024ics0304380024002898.html
   My bibliography  Save this article

Towards a liana plant functional type for vegetation models

Author

Listed:
  • Verbeeck, Hans
  • De Deurwaerder, Hannes P.T.
  • Kearsley, Elizabeth
  • Moorthy, Sruthi M.Krishna
  • Mundondo, Francis Mumbanza
  • Coppieters, Kasper
  • Schnitzer, Stefan A.
  • Longo, Marcos
  • Peaucelle, Marc
  • Bauters, Marijn
  • Meunier, Félicien

Abstract

Lianas (woody climbers) are crucial components of tropical forests and they have been increasingly recognized to have profound effects on tropical forest carbon dynamics. Despite their importance, lianas' representation in vegetation models remains limited, partly due to the complexity of liana-tree dynamics and the diversity in liana life history strategies. This paper provides a comprehensive review of advances and challenges for mechanistically representing lianas in forest ecosystem models and a proposed path towards effectively representing lianas in these models.

Suggested Citation

  • Verbeeck, Hans & De Deurwaerder, Hannes P.T. & Kearsley, Elizabeth & Moorthy, Sruthi M.Krishna & Mundondo, Francis Mumbanza & Coppieters, Kasper & Schnitzer, Stefan A. & Longo, Marcos & Peaucelle, Mar, 2024. "Towards a liana plant functional type for vegetation models," Ecological Modelling, Elsevier, vol. 498(C).
  • Handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002898
    DOI: 10.1016/j.ecolmodel.2024.110901
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024002898
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110901?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ian J. Wright & Peter B. Reich & Mark Westoby & David D. Ackerly & Zdravko Baruch & Frans Bongers & Jeannine Cavender-Bares & Terry Chapin & Johannes H. C. Cornelissen & Matthias Diemer & Jaume Flexas, 2004. "The worldwide leaf economics spectrum," Nature, Nature, vol. 428(6985), pages 821-827, April.
    2. Oliver L. Phillips & Rodolfo Vásquez Martínez & Luzmila Arroyo & Timothy R. Baker & Timothy Killeen & Simon L. Lewis & Yadvinder Malhi & Abel Monteagudo Mendoza & David Neill & Percy Núñez Vargas & Mi, 2002. "Increasing dominance of large lianas in Amazonian forests," Nature, Nature, vol. 418(6899), pages 770-774, August.
    3. Seidl, Rupert & Rammer, Werner & Scheller, Robert M. & Spies, Thomas A., 2012. "An individual-based process model to simulate landscape-scale forest ecosystem dynamics," Ecological Modelling, Elsevier, vol. 231(C), pages 87-100.
    4. Fischer, Rico & Bohn, Friedrich & Dantas de Paula, Mateus & Dislich, Claudia & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Kazmierczak, Martin & Knapp, Nikolai & Lehmann, Sebastian & Paulick, Sebastia, 2016. "Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests," Ecological Modelling, Elsevier, vol. 326(C), pages 124-133.
    5. Alyssa M. Willson & Anna T. Trugman & Jennifer S. Powers & Chris M. Smith-Martin & David Medvigy, 2022. "Climate and hydraulic traits interact to set thresholds for liana viability," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    6. di Porcia e Brugnera, Manfredo & Fischer, Rico & Taubert, Franziska & Huth, Andreas & Verbeeck, Hans, 2020. "Lianas in silico, ecological insights from a model of structural parasitism," Ecological Modelling, Elsevier, vol. 431(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petter, Gunnar & Kreft, Holger & Ong, Yongzhi & Zotz, Gerhard & Cabral, Juliano Sarmento, 2021. "Modelling the long-term dynamics of tropical forests: From leaf traits to whole-tree growth patterns," Ecological Modelling, Elsevier, vol. 460(C).
    2. Landuyt, Dries & Blondeel, Haben & Lorer, Eline & Perring, Michael P. & Steppe, Kathy & Verheyen, Kris, 2024. "A trait-based modelling approach towards dynamic predictions of understorey communities in temperate forests," Ecological Modelling, Elsevier, vol. 498(C).
    3. Rodrigo S Rios & Cristian Salgado-Luarte & Ernesto Gianoli, 2014. "Species Divergence and Phylogenetic Variation of Ecophysiological Traits in Lianas and Trees," PLOS ONE, Public Library of Science, vol. 9(6), pages 1-10, June.
    4. Claudia Dislich & Elisabeth Hettig & Jan Salecker & Johannes Heinonen & Jann Lay & Katrin M Meyer & Kerstin Wiegand & Suria Tarigan, 2018. "Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-20, January.
    5. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    6. Maria Wanic & Mariola Parzonka, 2023. "Assessing the Role of Crop Rotation in Shaping Foliage Characteristics and Leaf Gas Exchange Parameters for Winter Wheat," Agriculture, MDPI, vol. 13(5), pages 1-20, April.
    7. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    8. Forrester, David I., 2014. "A stand-level light interception model for horizontally and vertically heterogeneous canopies," Ecological Modelling, Elsevier, vol. 276(C), pages 14-22.
    9. Yeonggeun Song & Sukwoo Kim & Haeun Koo & Hyeonhwa Kim & Kidae Kim & Jaeuk Lee & Sujin Jang & Kyeong Cheol Lee, 2023. "Assessing the Suitability of Sediment Soil to Be Reused by Different Soil Treatments for Forest Agriculture," Sustainability, MDPI, vol. 15(15), pages 1-18, July.
    10. Yi Lei & Jing Gao & Qi Wang & Weiying Zeng & Dhungana Diwakar & Yaodan Zhang & Xianming Tan & Zudong Sun & Feng Yang & Wenyu Yang, 2024. "Cyclic Electron Flow Alleviates the Stress of Light Fluctuation on Soybean Photosynthesis," Agriculture, MDPI, vol. 14(7), pages 1-12, June.
    11. Sato, Hisashi & Itoh, Akihiko & Kohyama, Takashi, 2007. "SEIB–DGVM: A new Dynamic Global Vegetation Model using a spatially explicit individual-based approach," Ecological Modelling, Elsevier, vol. 200(3), pages 279-307.
    12. Francisco J. Muñoz-Gálvez & José I. Querejeta & Cristina Moreno-Gutiérrez & Wei Ren & Enrique G. de la Riva & Iván Prieto, 2025. "Trait coordination and trade-offs constrain the diversity of water use strategies in Mediterranean woody plants," Nature Communications, Nature, vol. 16(1), pages 1-17, December.
    13. Li, Haotian & Li, Lu & Liu, Na & Chen, Suying & Shao, Liwei & Sekiya, Nobuhito & Zhang, Xiying, 2022. "Root efficiency and water use regulation relating to rooting depth of winter wheat," Agricultural Water Management, Elsevier, vol. 269(C).
    14. Lindh, Magnus & Manzoni, Stefano, 2021. "Plant evolution along the ‘fast–slow’ growth economics spectrum under altered precipitation regimes," Ecological Modelling, Elsevier, vol. 448(C).
    15. Mariana García Criado & Isla H. Myers-Smith & Anne D. Bjorkman & Signe Normand & Anne Blach-Overgaard & Haydn J. D. Thomas & Anu Eskelinen & Konsta Happonen & Juha M. Alatalo & Alba Anadon-Rosell & Is, 2023. "Plant traits poorly predict winner and loser shrub species in a warming tundra biome," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Larocque, Guy R. & Bhatti, Jagtar & Arsenault, André, 2014. "Integrated modelling software platform development for effective use of ecosystem models," Ecological Modelling, Elsevier, vol. 288(C), pages 195-202.
    17. Simpkins, Craig E. & Bellingham, Peter J. & Reihana, Kiri & Brock, James M.R. & Perry, George L.W., 2025. "Evaluating the effects of two newly emerging plant pathogens on northern Aotearoa-New Zealand forests using an individual-based model," Ecological Modelling, Elsevier, vol. 500(C).
    18. Liting Zheng & Kathryn E. Barry & Nathaly R. Guerrero-Ramírez & Dylan Craven & Peter B. Reich & Kris Verheyen & Michael Scherer-Lorenzen & Nico Eisenhauer & Nadia Barsoum & Jürgen Bauhus & Helge Bruel, 2024. "Effects of plant diversity on productivity strengthen over time due to trait-dependent shifts in species overyielding," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Yongjiang Sun & Xiang Wang & Qiwen Shao & Qi Wang & Siyuan Wang & Ruimin Yu & Shubin Dong & Zhiming Xin & Huijie Xiao & Jin Cheng, 2024. "Photosynthetic Performance and Heterogeneous Anatomical Structure in Prunus humilis under Saline–Alkaline Stress," Agriculture, MDPI, vol. 14(9), pages 1-15, September.
    20. Pan, Quan & Wen, Zhi & Wu, Tong & Zheng, Tianchen & Yang, Yanzheng & Li, Ruonan & Zheng, Hua, 2022. "Trade-offs and synergies of forest ecosystem services from the perspective of plant functional traits: A systematic review," Ecosystem Services, Elsevier, vol. 58(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.