IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v496y2024ics0304380024002023.html
   My bibliography  Save this article

Spruce bark beetle phenological modelling and drought risk within framework of TANABBO II model

Author

Listed:
  • Pirtskhalava-Karpova, Nana
  • Karpov, Aleksandr
  • Trubin, Aleksei
  • Koreň, Milan
  • Blaženec, Miroslav
  • Holuša, Jaroslav
  • Jakuš, Rastislav

Abstract

Global warming plays a major role in the disruption of forest ecosystems by bark beetle outbreaks. Decreasing precipitation and more frequent droughts create the conditions for water stress in trees. The Eurasian spruce bark beetle (Ips typographus L.) is more dangerous for Norway spruce (Picea abies (L.) Karst.) forests in Central Europe under these conditions, because even healthy trees under water stress have a lower probability of survival during massive spruce bark beetle outbreaks. This critical issue highlights the importance of targeted research and intervention strategies in affected regions; hence, this study has a focus on the Horní Planá region in Central Europe, which is managed by the Military Forests and Farms of the Czech Republic (VLS).

Suggested Citation

  • Pirtskhalava-Karpova, Nana & Karpov, Aleksandr & Trubin, Aleksei & Koreň, Milan & Blaženec, Miroslav & Holuša, Jaroslav & Jakuš, Rastislav, 2024. "Spruce bark beetle phenological modelling and drought risk within framework of TANABBO II model," Ecological Modelling, Elsevier, vol. 496(C).
  • Handle: RePEc:eee:ecomod:v:496:y:2024:i:c:s0304380024002023
    DOI: 10.1016/j.ecolmodel.2024.110814
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024002023
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Julia Rosen, 2016. "Research protocols: A forest of hypotheses," Nature, Nature, vol. 536(7615), pages 239-241, August.
    2. Rupert Seidl & Dominik Thom & Markus Kautz & Dario Martin-Benito & Mikko Peltoniemi & Giorgio Vacchiano & Jan Wild & Davide Ascoli & Michal Petr & Juha Honkaniemi & Manfred J. Lexer & Volodymyr Trotsi, 2017. "Forest disturbances under climate change," Nature Climate Change, Nature, vol. 7(6), pages 395-402, June.
    3. Pollard, Ciarán P. & Griffin, Christine T. & Andrade Moral, Rafael de & Duffy, Catriona & Chuche, Julien & Gaffney, Michael T. & Fealy, Reamonn M. & Fealy, Rowan, 2020. "phenModel: A temperature-dependent phenology/voltinism model for a herbivorous insect incorporating facultative diapause and budburst," Ecological Modelling, Elsevier, vol. 416(C).
    4. Seidl, Rupert & Baier, Peter & Rammer, Werner & Schopf, Axel & Lexer, Manfred J., 2007. "Modelling tree mortality by bark beetle infestation in Norway spruce forests," Ecological Modelling, Elsevier, vol. 206(3), pages 383-399.
    5. Michael J. Koontz & Andrew M. Latimer & Leif A. Mortenson & Christopher J. Fettig & Malcolm P. North, 2021. "Cross-scale interaction of host tree size and climatic water deficit governs bark beetle-induced tree mortality," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    6. Ogris, Nikica & Ferlan, Mitja & Hauptman, Tine & Pavlin, Roman & Kavčič, Andreja & Jurc, Maja & de Groot, Maarten, 2020. "Sensitivity analysis, calibration and validation of a phenology model for Pityogenes chalcographus (CHAPY)," Ecological Modelling, Elsevier, vol. 430(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seidl, Rupert & Fernandes, Paulo M. & Fonseca, Teresa F. & Gillet, François & Jönsson, Anna Maria & Merganičová, Katarína & Netherer, Sigrid & Arpaci, Alexander & Bontemps, Jean-Daniel & Bugmann, Hara, 2011. "Modelling natural disturbances in forest ecosystems: a review," Ecological Modelling, Elsevier, vol. 222(4), pages 903-924.
    2. Qin Ma & Yanjun Su & Chunyue Niu & Qin Ma & Tianyu Hu & Xiangzhong Luo & Xiaonan Tai & Tong Qiu & Yao Zhang & Roger C. Bales & Lingli Liu & Maggi Kelly & Qinghua Guo, 2023. "Tree mortality during long-term droughts is lower in structurally complex forest stands," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Rafael González-Val, 2021. "The Probability Distribution of Worldwide Forest Areas," Sustainability, MDPI, vol. 13(3), pages 1-19, January.
    4. Honkaniemi, Juha & Ojansuu, Risto & Kasanen, Risto & Heliövaara, Kari, 2018. "Interaction of disturbance agents on Norway spruce: A mechanistic model of bark beetle dynamics integrated in simulation framework WINDROT," Ecological Modelling, Elsevier, vol. 388(C), pages 45-60.
    5. Li Yu & Fengxue Gu & Mei Huang & Bo Tao & Man Hao & Zhaosheng Wang, 2020. "Impacts of 1.5 °C and 2 °C Global Warming on Net Primary Productivity and Carbon Balance in China’s Terrestrial Ecosystems," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    6. Ogris, Nikica & Ferlan, Mitja & Hauptman, Tine & Pavlin, Roman & Kavčič, Andreja & Jurc, Maja & de Groot, Maarten, 2019. "RITY – A phenology model of Ips typographus as a tool for optimization of its monitoring," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.
    7. Kolo, Horst & Kindu, Mengistie & Knoke, Thomas, 2020. "Optimizing forest management for timber production, carbon sequestration and groundwater recharge," Ecosystem Services, Elsevier, vol. 44(C).
    8. Pappalardo, Sonia & Villa, María & Santos, Sónia A.P. & Benhadi-Marín, Jacinto & Pereira, José Alberto & Venturino, Ezio, 2021. "A tritrophic interaction model for an olive tree pest, the olive moth — Prays oleae (Bernard)," Ecological Modelling, Elsevier, vol. 462(C).
    9. Zefeng Chen & Weiguang Wang & Giovanni Forzieri & Alessandro Cescatti, 2024. "Transition from positive to negative indirect CO2 effects on the vegetation carbon uptake," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    10. Rincon, Diego F. & Esch, Evan D. & Gutierrez-Illan, Javier & Tesche, Melissa & Crowder, David W., 2024. "Predicting insect population dynamics by linking phenology models and monitoring data," Ecological Modelling, Elsevier, vol. 493(C).
    11. Fugeray-Scarbel, Aline & Irz, Xavier & Lemarié, Stéphane, 2023. "Innovation in forest tree genetics: A comparative economic analysis in the European context," Forest Policy and Economics, Elsevier, vol. 155(C).
    12. Christopher G. Bousfield & Oscar Morton & David B. Lindenmayer & Adam F. A. Pellegrini & Matthew G. Hethcoat & David P. Edwards, 2025. "Global risk of wildfire across timber production systems," Nature Communications, Nature, vol. 16(1), pages 1-8, December.
    13. Staffieri, Irene & Sitko, Nicholas J. & Maluccio, John A., 2023. "Sustaining enrolment when rains fail: School feeding, rainfall shocks and schooling in Malawi," Food Policy, Elsevier, vol. 121(C).
    14. Asada, Raphael & Hurmekoski, Elias & Hoeben, Annechien Dirkje & Patacca, Marco & Stern, Tobias & Toppinen, Anne, 2023. "Resilient forest-based value chains? Econometric analysis of roundwood prices in five European countries in the era of natural disturbances," Forest Policy and Economics, Elsevier, vol. 153(C).
    15. Khuc, Quy Van & Ho, Tung Manh & Nguyen, Hong-Kong T. & Nguyen, Minh-Hoang & Ho, Manh-Toan & Vuong, Thu-Trang & La, Viet-Phuong & Vuong, Quan-Hoang, 2020. "Toward a new paradigm of environmentally friendly cultural values," OSF Preprints 3g26q, Center for Open Science.
    16. Benzina Imene & Bekdouche Farid & Bachir Abdelkrim Si, 2024. "Post-fire dynamics of recolonization by Cistus plants in the Aleppo pine and Cork oak forests in Bejaia region, central north Algeria," Environmental & Socio-economic Studies, Sciendo, vol. 12(2), pages 40-47.
    17. Qi Cai & Yushi Cai & Yali Wen, 2018. "Spatially Differentiated Trends between Forest Pest-Induced Losses and Measures for Their Control in China," Sustainability, MDPI, vol. 11(1), pages 1-16, December.
    18. Hyo-Jeong Kim & Jin-Soo Kim & Soon-Il An & Jongsoo Shin & Ji-Hoon Oh & Jong-Seong Kug, 2024. "Pervasive fire danger continued under a negative emission scenario," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    19. Nikinmaa, Laura & de Koning, Johannes H.C. & Derks, Jakob & Grabska-Szwagrzyk, Ewa & Konczal, Agata A. & Lindner, Marcus & Socha, Jarosław & Muys, Bart, 2024. "The priorities in managing forest disturbances to enhance forest resilience: A comparison of a literature analysis and perceptions of forest professionals," Forest Policy and Economics, Elsevier, vol. 158(C).
    20. Dongfan Xu & Jialong Zhang & Rui Bao & Yi Liao & Dongyang Han & Qianwei Liu & Tao Cheng, 2021. "Temporal and Spatial Variation of Aboveground Biomass of Pinus densata and Its Drivers in Shangri-La, CHINA," IJERPH, MDPI, vol. 19(1), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:496:y:2024:i:c:s0304380024002023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.