IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v482y2023ics0304380023000960.html
   My bibliography  Save this article

Trade-offs of multiple urban ecosystem services based on land-use scenarios in the Tumen River cross-border area

Author

Listed:
  • Jin, Ming
  • Han, Xulong
  • Li, Mingyu

Abstract

Land use change affected by rapid urbanization, economic development and political influences. As a crucial factor to ecosystem services (ESs), irrational land use is likely to bring about loss of some ecosystem services (ESs). In the meanwhile, the trade-offs occur among the ESs are also changing. This research aims to coordinate the relationship of ESs for land use planning under different scenarios in Tumen River Region. The essay has been organized in the following way. Initially, we analyzed the impact on 6 ESs in the context of the local land use change. Furthermore, we explored their trade-offs among the ESs and seek to provide theoretical support to planning and management in the Tumen River Region. Here, we used data from 1996 to 2006 and 2006–2016 to examine how the ecosystem services are affected by trade-offs in three different scenarios: Baseline Development (BD), Fast Development (FD), and Harmonious Development (HD) by using CASA and USLE models. Additionally, with the help of integrated valuation of ecosystem services and trade-offs (InVEST) model, we assessed 6 ecosystem services not only including Meat production (MP), Net primary production (NPP), Habitat quality (HQ), but Crop production (CP), Soil conservation (SC), Water retention (WR) as well during 1996–2016. Firstly, we demonstrated the numerous trade-offs and/or synergistic interactions between ESs. Then we assessed these ESs at the regional scale based on the 3 scenarios. Finally, we explored the optimal scenario. Results show that (1) it was significant that the dramatic land use change in the study area from 1996 to 2016, especially in cultivated land and forested land;(2) the total ESV in the study area initially decreased and then increased, and showed a gradual improvement trend during 1996–2016;(3) multiple ESs in addition to 2 ESs, containing Habitat Quality (HQ) and Soil Conservation (SC), there are also Water Retention (WR) and Net Primary Productivity (NPP) during 1996–2016 showed positive correlations. However, Crop and Meat Production vs Soil Retention was not significantly correlated in the study period;(4) among all scenario simulations, ESs showed the most improvement in the HD scenario, and following closely behind are the BD scenario and the FD scenario. The BD scenario had fewer trade-offs compared with against 2016, and the HD and FD scenarios had more;(5) relative to the catchment area, the HD scenario is the optimal situation. Our findings will provide some references for the construction of land use management and ecological civilization in cross-border area.

Suggested Citation

  • Jin, Ming & Han, Xulong & Li, Mingyu, 2023. "Trade-offs of multiple urban ecosystem services based on land-use scenarios in the Tumen River cross-border area," Ecological Modelling, Elsevier, vol. 482(C).
  • Handle: RePEc:eee:ecomod:v:482:y:2023:i:c:s0304380023000960
    DOI: 10.1016/j.ecolmodel.2023.110368
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023000960
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110368?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pan, Quan & Wen, Zhi & Wu, Tong & Zheng, Tianchen & Yang, Yanzheng & Li, Ruonan & Zheng, Hua, 2022. "Trade-offs and synergies of forest ecosystem services from the perspective of plant functional traits: A systematic review," Ecosystem Services, Elsevier, vol. 58(C).
    2. Qi Fu & Bo Li & Linlin Yang & Zhilong Wu & Xinshi Zhang, 2015. "Ecosystem Services Evaluation and Its Spatial Characteristics in Central Asia’s Arid Regions: A Case Study in Altay Prefecture, China," Sustainability, MDPI, vol. 7(7), pages 1-19, June.
    3. Zhang, Da & Huang, Qingxu & He, Chunyang & Wu, Jianguo, 2017. "Impacts of urban expansion on ecosystem services in the Beijing-Tianjin-Hebei urban agglomeration, China: A scenario analysis based on the Shared Socioeconomic Pathways," Resources, Conservation & Recycling, Elsevier, vol. 125(C), pages 115-130.
    4. Costanza, Robert & d'Arge, Ralph & de Groot, Rudolf & Farber, Stephen & Grasso, Monica & Hannon, Bruce & Limburg, Karin & Naeem, Shahid & O'Neill, Robert V. & Paruelo, Jose, 1998. "The value of the world's ecosystem services and natural capital," Ecological Economics, Elsevier, vol. 25(1), pages 3-15, April.
    5. Hein, Lars & van Koppen, Kris & de Groot, Rudolf S. & van Ierland, Ekko C., 2006. "Spatial scales, stakeholders and the valuation of ecosystem services," Ecological Economics, Elsevier, vol. 57(2), pages 209-228, May.
    6. Brett A. Bryan & Lei Gao & Yanqiong Ye & Xiufeng Sun & Jeffery D. Connor & Neville D. Crossman & Mark Stafford-Smith & Jianguo Wu & Chunyang He & Deyong Yu & Zhifeng Liu & Ang Li & Qingxu Huang & Hai , 2018. "China’s response to a national land-system sustainability emergency," Nature, Nature, vol. 559(7713), pages 193-204, July.
    7. Chisholm, Ryan A., 2010. "Trade-offs between ecosystem services: Water and carbon in a biodiversity hotspot," Ecological Economics, Elsevier, vol. 69(10), pages 1973-1987, August.
    8. Adrienne Grêt-Regamey & Bettina Weibel & Kenneth J Bagstad & Marika Ferrari & Davide Geneletti & Hermann Klug & Uta Schirpke & Ulrike Tappeiner, 2014. "On the Effects of Scale for Ecosystem Services Mapping," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-26, December.
    9. Shilong Piao & Jingyun Fang & Philippe Ciais & Philippe Peylin & Yao Huang & Stephen Sitch & Tao Wang, 2009. "The carbon balance of terrestrial ecosystems in China," Nature, Nature, vol. 458(7241), pages 1009-1013, April.
    10. Georgina Mace, 2013. "Global change: Ecology must evolve," Nature, Nature, vol. 503(7475), pages 191-192, November.
    11. Ferdinando Villa & Kenneth J Bagstad & Brian Voigt & Gary W Johnson & Rosimeiry Portela & Miroslav Honzák & David Batker, 2014. "A Methodology for Adaptable and Robust Ecosystem Services Assessment," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-18, March.
    12. Djanibekov, Utkur & Khamzina, Asia & Djanibekov, Nodir & Lamers, John P.A., 2012. "How attractive are short-term CDM forestations in arid regions? The case of irrigated croplands in Uzbekistan," Forest Policy and Economics, Elsevier, vol. 21(C), pages 108-117.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuhua Liang & Fan Yang & Jingyi Zhang & Suwen Xiong & Zhenni Xu, 2024. "Assessment and Management Zoning of Ecosystem Service Trade-Off/Synergy Based on the Social–Ecological Balance: A Case of the Chang-Zhu-Tan Metropolitan Area," Land, MDPI, vol. 13(2), pages 1-25, January.
    2. Yahui Wang & Erfu Dai & Yue Qi & Yao Fan, 2023. "Study on the Ecosystem Service Supply–Demand Relationship and Development Strategies in Mountains in Southwest China Based on Different Spatial Scales," Land, MDPI, vol. 12(11), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hearnshaw, Edward J.S. & Cullen, Ross, 2010. "The Sustainability and Cost-Effectiveness of Water Storage Projects on Canterbury Rivers: The Opihi River Case," 2010 Conference, August 26-27, 2010, Nelson, New Zealand 97265, New Zealand Agricultural and Resource Economics Society.
    2. Ping Shen & Lijuan Wu & Ziwen Huo & Jiaying Zhang, 2023. "A Study on the Spatial Pattern of the Ecological Product Value of China’s County-Level Regions Based on GEP Evaluation," IJERPH, MDPI, vol. 20(4), pages 1-18, February.
    3. Makovníková Jarmila & Pálka Boris & Kološta Stanislav & Flaška Filip & Orságová Katarína & Spišiaková Mária, 2020. "Non-Monetary Assessment and Mapping of the Potential of Agroecosystem Services in Rural Slovakia," European Countryside, Sciendo, vol. 12(2), pages 257-276, June.
    4. Jiayi Zhou & Kangning Xiong & Qi Wang & Jiuhan Tang & Li Lin, 2022. "A Review of Ecological Assets and Ecological Products Supply: Implications for the Karst Rocky Desertification Control," IJERPH, MDPI, vol. 19(16), pages 1-20, August.
    5. Chen, Haojie & Costanza, Robert & Kubiszewski, Ida, 2022. "Legitimacy and limitations of valuing the oxygen production of ecosystems," Ecosystem Services, Elsevier, vol. 58(C).
    6. Adrienne Grêt-Regamey & Bettina Weibel & Kenneth J Bagstad & Marika Ferrari & Davide Geneletti & Hermann Klug & Uta Schirpke & Ulrike Tappeiner, 2014. "On the Effects of Scale for Ecosystem Services Mapping," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-26, December.
    7. Valencia Torres, Angélica & Tiwari, Chetan & Atkinson, Samuel F., 2021. "Progress in ecosystem services research: A guide for scholars and practitioners," Ecosystem Services, Elsevier, vol. 49(C).
    8. Gutiérrez-Arellano, Claudia & Mulligan, Mark, 2020. "Small-sized protected areas contribute more per unit area to tropical crop pollination than large protected areas," Ecosystem Services, Elsevier, vol. 44(C).
    9. Lilian Ding & Yan Liao & Congmou Zhu & Qiwei Zheng & Ke Wang, 2023. "Multiscale Analysis of the Effects of Landscape Pattern on the Trade-Offs and Synergies of Ecosystem Services in Southern Zhejiang Province, China," Land, MDPI, vol. 12(5), pages 1-18, April.
    10. Kubiszewski, Ida & Concollato, Luke & Costanza, Robert & Stern, David I., 2023. "Changes in authorship, networks, and research topics in ecosystem services," Ecosystem Services, Elsevier, vol. 59(C).
    11. Mann, Carsten, 2015. "Strategies for sustainable policy design: Constructive assessment of biodiversity offsets and banking," Ecosystem Services, Elsevier, vol. 16(C), pages 266-274.
    12. Marie Hubatova & James McGinlay & David J. Parsons & Joe Morris & Anil R. Graves, 2023. "Assessing Preferences for Cultural Ecosystem Services in the English Countryside Using Q Methodology," Land, MDPI, vol. 12(2), pages 1-25, January.
    13. Ping Zhang & Liang He & Xin Fan & Peishu Huo & Yunhui Liu & Tao Zhang & Ying Pan & Zhenrong Yu, 2015. "Ecosystem Service Value Assessment and Contribution Factor Analysis of Land Use Change in Miyun County, China," Sustainability, MDPI, vol. 7(6), pages 1-24, June.
    14. Léa Tardieu, 2017. "The need for integrated spatial assessments in ecosystem service mapping," Review of Agricultural, Food and Environmental Studies, Springer, vol. 98(3), pages 173-200, December.
    15. Dang, Anh Nguyet & Jackson, Bethanna Marie & Benavidez, Rubianca & Tomscha, Stephanie Anne, 2021. "Review of ecosystem service assessments: Pathways for policy integration in Southeast Asia," Ecosystem Services, Elsevier, vol. 49(C).
    16. Zhou, Peng & Zhang, Haijie & Huang, Bei & Ji, Yongli & Peng, Shaolin & Zhou, Ting, 2022. "Are productivity and biodiversity adequate predictors for rapid assessment of forest ecosystem services values?," Ecosystem Services, Elsevier, vol. 57(C).
    17. Marini Govigli, V. & Bruzzese, S., 2023. "Assessing the emotional and spiritual dimension of forests: A review of existing participatory methods," Forest Policy and Economics, Elsevier, vol. 153(C).
    18. Yanqiong Ye & Jiaen Zhang & Ting Wang & Hui Bai & Xuan Wang & Wei Zhao, 2021. "Changes in Land-Use and Ecosystem Service Value in Guangdong Province, Southern China, from 1990 to 2018," Land, MDPI, vol. 10(4), pages 1-19, April.
    19. Jie Guo & Tianqi Zhu & Minghao Ou & Fengsong Pei & Xiaoyu Gan & Weixin Ou & Yu Tao, 2018. "A Framework of Payment for Ecosystem Services to Protect Cropland: A Case Study of the Yangtze River Delta in China," Sustainability, MDPI, vol. 10(1), pages 1-18, January.
    20. Cornelis Leeuwen & Jos Frijns & Annemarie Wezel & Frans Ven, 2012. "City Blueprints: 24 Indicators to Assess the Sustainability of the Urban Water Cycle," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(8), pages 2177-2197, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:482:y:2023:i:c:s0304380023000960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.