IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v430y2020ics0304380020302222.html
   My bibliography  Save this article

Modeling the Growth of Sugar Kelp (Saccharina latissima) in Aquaculture Systems using Dynamic Energy Budget Theory

Author

Listed:
  • Venolia, Celeste T.
  • Lavaud, Romain
  • Green-Gavrielidis, Lindsay A.
  • Thornber, Carol
  • Humphries, Austin T.

Abstract

Aquaculture is an industry with the capacity for further growth that can contribute to sustainable food systems to feed an increasing global population. Sugar kelp (Saccharina latissima) is of particular interest for farmers as a fast-growing species that benefits ecosystems as a primary producer. However, as a new industry in the U.S., farmers interested in growing S. latissima lack data on growth dynamics. To address this gap, we calibrated a Dynamic Energy Budget (DEB) model to data from the literature and field-based growth experiments in Rhode Island (U.S.A.). Environmental variables forcing model dynamics include temperature, irradiance, dissolved inorganic carbon concentration, and nitrate and nitrite concentration. The modeled estimates for field S. latissima blade length were accurate despite underestimation of early season growth. In some simulations, winter growth was limited by the rate at which the light-dependent reaction of photosynthesis, the first step of carbon assimilation, was performed. Nitrogen (N) reserves were also an important limiting factor especially later in the spring season as irradiance increased, although the low resolution of N forcing concentrations might restrict the model accuracy. Since this model is focused on S. latissima grown in an aquaculture setting with winter and spring growth, no specific assumptions were made to include summer growth patterns such as tissue loss or reproduction. The results indicate that this mechanistic model for S. latissima captures growth dynamics and blade length at the time of harvest, thus it could be used for spatial predictions of S. latissima aquaculture production across a range of environmental conditions and locations. The model could be a particularly useful tool for further development of sustainable ocean food production systems involving seaweed.

Suggested Citation

  • Venolia, Celeste T. & Lavaud, Romain & Green-Gavrielidis, Lindsay A. & Thornber, Carol & Humphries, Austin T., 2020. "Modeling the Growth of Sugar Kelp (Saccharina latissima) in Aquaculture Systems using Dynamic Energy Budget Theory," Ecological Modelling, Elsevier, vol. 430(C).
  • Handle: RePEc:eee:ecomod:v:430:y:2020:i:c:s0304380020302222
    DOI: 10.1016/j.ecolmodel.2020.109151
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020302222
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109151?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grant, Jon & Curran, Kristian J. & Guyondet, Thomas L. & Tita, Guglielmo & Bacher, Cédric & Koutitonsky, Vladimir & Dowd, Michael, 2007. "A box model of carrying capacity for suspended mussel aquaculture in Lagune de la Grande-Entrée, Iles-de-la-Madeleine, Québec," Ecological Modelling, Elsevier, vol. 200(1), pages 193-206.
    2. Ren, Jeffrey S. & Stenton-Dozey, Jeanie & Plew, David R. & Fang, Jianguang & Gall, Mark, 2012. "An ecosystem model for optimising production in integrated multitrophic aquaculture systems," Ecological Modelling, Elsevier, vol. 246(C), pages 34-46.
    3. Soetaert, Karline & Petzoldt, Thomas & Setzer, R. Woodrow, 2010. "Solving Differential Equations in R: Package deSolve," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i09).
    4. Lavaud, Romain & La Peyre, Megan K. & Casas, Sandra M. & Bacher, Cédric & La Peyre, Jérôme F., 2017. "Integrating the effects of salinity on the physiology of the eastern oyster, Crassostrea virginica, in the northern Gulf of Mexico through a Dynamic Energy Budget model," Ecological Modelling, Elsevier, vol. 363(C), pages 221-233.
    5. Lavaud, Romain & Filgueira, Ramón & Nadeau, André & Steeves, Laura & Guyondet, Thomas, 2020. "A Dynamic Energy Budget model for the macroalga Ulva lactuca," Ecological Modelling, Elsevier, vol. 418(C).
    6. Soetaert, Karline & Petzoldt, Thomas, 2010. "Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i03).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Oort, P.A.J. & Verhagen, A. & van der Werf, A.K., 2023. "Can seaweeds feed the world? Modelling world offshore seaweed production potential," Ecological Modelling, Elsevier, vol. 484(C).
    2. Lavaud, Romain & Ullman, David S. & Venolia, Celeste & Thornber, Carol & Green-Gavrielidis, Lindsay & Humphries, Austin, 2023. "Production potential of seaweed and shellfish integrated aquaculture in Narragansett Bay (Rhode Island, U.S.) using an ecosystem model," Ecological Modelling, Elsevier, vol. 481(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, L.I.N. & Meirong, D.U. & Hui, L.I.U. & Jianguang, F.A.N.G. & Lars, ASPLIN & Zengjie, J.I.A.N.G., 2020. "A physical-biological coupled ecosystem model for integrated aquaculture of bivalve and seaweed in sanggou bay," Ecological Modelling, Elsevier, vol. 431(C).
    2. Littfinski, Tobias & Stricker, Max & Nettmann, Edith & Gehring, Tito & Hiegemann, Heinz & Krimmler, Stefan & Lübken, Manfred & Pant, Deepak & Wichern, Marc, 2022. "A generalized whole-cell model for wastewater-fed microbial fuel cells," Applied Energy, Elsevier, vol. 321(C).
    3. Tom Shatwell & Jan Köhler & Andreas Nicklisch, 2014. "Temperature and Photoperiod Interactions with Phosphorus-Limited Growth and Competition of Two Diatoms," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-15, July.
    4. Husson, Bérengère & Sarrazin, Jozée & van Oevelen, Dick & Sarradin, Pierre-Marie & Soetaert, Karline & Menesguen, Alain, 2018. "Modelling the interactions of the hydrothermal mussel Bathymodiolus azoricus with vent fluid," Ecological Modelling, Elsevier, vol. 377(C), pages 35-50.
    5. Zhou, W. & O’Neill, E. & Moncaster, A. & Reiner, D. & Guthrie, P., 2019. "Applying Bayesian Model Averaging to Characterise Urban Residential Stock Turnover Dynamics," Cambridge Working Papers in Economics 1986, Faculty of Economics, University of Cambridge.
    6. Hanson, Paul C. & Stillman, Aviah B. & Jia, Xiaowei & Karpatne, Anuj & Dugan, Hilary A. & Carey, Cayelan C. & Stachelek, Joseph & Ward, Nicole K. & Zhang, Yu & Read, Jordan S. & Kumar, Vipin, 2020. "Predicting lake surface water phosphorus dynamics using process-guided machine learning," Ecological Modelling, Elsevier, vol. 430(C).
    7. Fatima-Zahra Jaouimaa & Daniel Dempsey & Suzanne Van Osch & Stephen Kinsella & Kevin Burke & Jason Wyse & James Sweeney, 2021. "An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland with framework for evaluating health intervention cost," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-25, December.
    8. Holland, E.P. & Aegerter, J.N. & Smith, G.C., 2007. "Spatial sensitivity of a generic population model, using wild boar (Sus scrofa) as a test case," Ecological Modelling, Elsevier, vol. 205(1), pages 146-158.
    9. Hannah Al Ali & Alireza Daneshkhah & Abdesslam Boutayeb & Zindoga Mukandavire, 2022. "Examining Type 1 Diabetes Mathematical Models Using Experimental Data," IJERPH, MDPI, vol. 19(2), pages 1-20, January.
    10. Taffi, Marianna & Paoletti, Nicola & Liò, Pietro & Pucciarelli, Sandra & Marini, Mauro, 2015. "Bioaccumulation modelling and sensitivity analysis for discovering key players in contaminated food webs: The case study of PCBs in the Adriatic Sea," Ecological Modelling, Elsevier, vol. 306(C), pages 205-215.
    11. Overstall, Antony M. & Woods, David C. & Martin, Kieran J., 2019. "Bayesian prediction for physical models with application to the optimization of the synthesis of pharmaceutical products using chemical kinetics," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 126-142.
    12. Serrouya, R. & Dickie, M. & DeMars, C. & Wittmann, M.J. & Boutin, S., 2020. "Predicting the effects of restoring linear features on woodland caribou populations," Ecological Modelling, Elsevier, vol. 416(C).
    13. Yurek, Simeon & Eaton, Mitchell J. & Lavaud, Romain & Laney, R. Wilson & DeAngelis, Donald L. & Pine, William E. & La Peyre, Megan & Martin, Julien & Frederick, Peter & Wang, Hongqing & Lowe, Michael , 2021. "Modeling structural mechanics of oyster reef self-organization including environmental constraints and community interactions," Ecological Modelling, Elsevier, vol. 440(C).
    14. Zadoki Tabo & Chester Kalinda & Lutz Breuer & Christian Albrecht, 2023. "Adapting Strategies for Effective Schistosomiasis Prevention: A Mathematical Modeling Approach," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    15. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    16. Meier, Laura & Brauns, Mario & Grimm, Volker & Weitere, Markus & Frank, Karin, 2022. "MASTIFF: A mechanistic model for cross-scale analyses of the functioning of multiple stressed riverine ecosystems," Ecological Modelling, Elsevier, vol. 470(C).
    17. Moore, Christopher M. & Catella, Samantha A. & Abbott, Karen C., 2018. "Population dynamics of mutualism and intraspecific density dependence: How θ-logistic density dependence affects mutualistic positive feedback," Ecological Modelling, Elsevier, vol. 368(C), pages 191-197.
    18. Hussnain Mukhtar & Yu-Pin Lin & Oleg V. Shipin & Joy R. Petway, 2017. "Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC," IJERPH, MDPI, vol. 14(7), pages 1-15, July.
    19. Sehjeong Kim & Abdessamad Tridane, 2017. "Thalassemia in the United Arab Emirates: Why it can be prevented but not eradicated," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-13, January.
    20. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:430:y:2020:i:c:s0304380020302222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.