IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i12p2609-d1165968.html
   My bibliography  Save this article

Adapting Strategies for Effective Schistosomiasis Prevention: A Mathematical Modeling Approach

Author

Listed:
  • Zadoki Tabo

    (Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392 Giessen, Germany
    Department of Landscape Ecology and Resource Management, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392 Giessen, Germany)

  • Chester Kalinda

    (Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392 Giessen, Germany
    Bill and Joyce Cummings Institute of Global Health, University of Global Health Equity, Kigali Heights, Plot 772 KG 7 Ave., Kigali P.O. Box 6955, Rwanda)

  • Lutz Breuer

    (Department of Landscape Ecology and Resource Management, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392 Giessen, Germany
    Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, Senckenbergstrasse 3, 35390 Giessen, Germany)

  • Christian Albrecht

    (Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Heinrich-Buff-Ring 26 (iFZ), 35392 Giessen, Germany)

Abstract

One of the most deadly neglected tropical diseases known to man is schistosomiasis. Understanding how the disease spreads and evaluating the relevant control strategies are key steps in predicting its spread. We propose a mathematical model to evaluate the potential impact of four strategies: chemotherapy, awareness programs, the mechanical removal of snails and molluscicides, and the impact of a change in temperature on different molluscicide performances based on their half-lives and the length of time they persist in contact with target species. The results show that the recruitment rate of humans and the presence of cercaria and miracidia parasites are crucial factors in disease transmission. However, schistosomiasis can be entirely eradicated by combining all of the four strategies. In the face of climate change and molluscicide degradation, the results show that increasing the temperatures and the number of days a molluscicide persists in the environment before it completely degrades decreases the chemically induced mortality rate of snails while increasing the half-life of different molluscicides increases the death rate of snails. Therefore, eradicating schistosomiasis effectively necessitates a comprehensive integration of all preventative measures. Moreover, regions with different weather patterns and seasonal climates need strategies that have been adapted in terms of the appropriate molluscicide and time intervals for reapplication and effective schistosomiasis control.

Suggested Citation

  • Zadoki Tabo & Chester Kalinda & Lutz Breuer & Christian Albrecht, 2023. "Adapting Strategies for Effective Schistosomiasis Prevention: A Mathematical Modeling Approach," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2609-:d:1165968
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/12/2609/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/12/2609/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soetaert, Karline & Petzoldt, Thomas & Setzer, R. Woodrow, 2010. "Solving Differential Equations in R: Package deSolve," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i09).
    2. Gisele Andrade & David J Bertsch & Andrea Gazzinelli & Charles H King, 2017. "Decline in infection-related morbidities following drug-mediated reductions in the intensity of Schistosoma infection: A systematic review and meta-analysis," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(2), pages 1-23, February.
    3. Charles H King & Laura J Sutherland & David Bertsch, 2015. "Systematic Review and Meta-analysis of the Impact of Chemical-Based Mollusciciding for Control of Schistosoma mansoni and S . haematobium Transmission," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(12), pages 1-23, December.
    4. Ebrima Kanyi & Ayodeji Sunday Afolabi & Nelson Owuor Onyango, 2021. "Mathematical Modeling and Analysis of Transmission Dynamics and Control of Schistosomiasis," Journal of Applied Mathematics, Hindawi, vol. 2021, pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rolando Rubilar-Torrealba & Lisandro Fermin & Soledad Torres, 2025. "Modeling Maximum drawdown Records with Piecewise Deterministic Markov Processe in Capital Markets," Papers 2503.23221, arXiv.org.
    2. Belém Barbosa & José Ramón Saura & Dag Bennett, 2024. "How do entrepreneurs perform digital marketing across the customer journey? A review and discussion of the main uses," The Journal of Technology Transfer, Springer, vol. 49(1), pages 69-103, February.
    3. Serrouya, R. & Dickie, M. & DeMars, C. & Wittmann, M.J. & Boutin, S., 2020. "Predicting the effects of restoring linear features on woodland caribou populations," Ecological Modelling, Elsevier, vol. 416(C).
    4. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    5. Lamonica, Dominique & Herbach, Ulysse & Orias, Frédéric & Clément, Bernard & Charles, Sandrine & Lopes, Christelle, 2016. "Mechanistic modelling of daphnid-algae dynamics within a laboratory microcosm," Ecological Modelling, Elsevier, vol. 320(C), pages 213-230.
    6. Mariano Méndez-Suárez & Ignacio Danvila-del-Valle, 2023. "Negative Word of Mouth (NWOM) using Compartmental Epidemiological Models in Banking Digital Transformation," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 17(1), March.
    7. Alex Root, 2019. "Mathematical Modeling of The Challenge to Detect Pancreatic Adenocarcinoma Early with Biomarkers," Challenges, MDPI, vol. 10(1), pages 1-15, April.
    8. Chevallier, Damien & Mourrain, Baptiste & Girondot, Marc, 2020. "Modelling leatherback biphasic indeterminate growth using a modified Gompertz equation," Ecological Modelling, Elsevier, vol. 426(C).
    9. Turner, Rolf & Banerjee, Pradeep & Shahlori, Rayomand, 2014. "Optimal Asset Pricing," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i11).
    10. Carturan, Bruno S. & Siewe, Nourridine & Cobbold, Christina A. & Tyson, Rebecca C., 2023. "Bumble bee pollination and the wildflower/crop trade-off: When do wildflower enhancements improve crop yield?," Ecological Modelling, Elsevier, vol. 484(C).
    11. Venolia, Celeste T. & Lavaud, Romain & Green-Gavrielidis, Lindsay A. & Thornber, Carol & Humphries, Austin T., 2020. "Modeling the Growth of Sugar Kelp (Saccharina latissima) in Aquaculture Systems using Dynamic Energy Budget Theory," Ecological Modelling, Elsevier, vol. 430(C).
    12. Lecorvaisier, Florian & Pontier, Dominique & Soubeyrand, Benoît & Fouchet, David, 2024. "Using a dynamical model to study the impact of a toxoid vaccine on the evolution of a bacterium: The example of diphtheria," Ecological Modelling, Elsevier, vol. 487(C).
    13. Karim, Md Aktar Ul & Bhagat, Supriya Ramdas & Bhowmick, Amiya Ranjan, 2022. "Empirical detection of parameter variation in growth curve models using interval specific estimators," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    14. Bahi, Aya & Sauvage, Sabine & Payraudeau, Sylvain & Tournebize, Julien, 2023. "PESTIPOND: A descriptive model of pesticide fate in artificial ponds: I. Model development," Ecological Modelling, Elsevier, vol. 485(C).
    15. Amara E Ezeamama & Amaya L Bustinduy & Allan K Nkwata & Leonardo Martinez & Noel Pabalan & Michael J Boivin & Charles H King, 2018. "Cognitive deficits and educational loss in children with schistosome infection—A systematic review and meta-analysis," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 12(1), pages 1-23, January.
    16. Win Min Han & Wiriya Mahikul & Thomas Pouplin & Saranath Lawpoolsri & Lisa J White & Wirichada Pan-Ngum, 2021. "Assessing the impacts of short-course multidrug-resistant tuberculosis treatment in the Southeast Asia Region using a mathematical modeling approach," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-14, March.
    17. Katin, Alexey & Giudice, Dario Del & Hall, Nathan S. & Paerl, Hans W. & Obenour, Daniel R., 2021. "Simulating algal dynamics within a Bayesian framework to evaluate controls on estuary productivity," Ecological Modelling, Elsevier, vol. 447(C).
    18. Elizabeth Goult & Laura Andrea Barrero Guevara & Michael Briga & Matthieu Domenech de Cellès, 2024. "Estimating the optimal age for infant measles vaccination," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    19. Myka Harun Sarajan & Kahkashan Mahreen & Patrizio Vanella & Alexander Kuhlmann, 2024. "Impact of Demographic Developments and PCV13 Vaccination on the Future Burden of Pneumococcal Diseases in Germany—An Integrated Probabilistic Differential Equation Approach," Mathematics, MDPI, vol. 12(6), pages 1-21, March.
    20. Tom Shatwell & Jan Köhler & Andreas Nicklisch, 2014. "Temperature and Photoperiod Interactions with Phosphorus-Limited Growth and Competition of Two Diatoms," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:12:p:2609-:d:1165968. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.