IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v376y2018icp54-67.html
   My bibliography  Save this article

Responses of summer phytoplankton biomass to changes in top-down forcing: Insights from comparative modelling

Author

Listed:
  • Maar, Marie
  • Butenschön, Momme
  • Daewel, Ute
  • Eggert, Anja
  • Fan, Wei
  • Hjøllo, Solfrid S.
  • Hufnagl, Marc
  • Huret, Martin
  • Ji, Rubao
  • Lacroix, Geneviève
  • Peck, Myron A.
  • Radtke, Hagen
  • Sailley, Sévrine
  • Sinerchia, Matteo
  • Skogen, Morten D.
  • Travers-Trolet, Morgane
  • Troost, Tineke A.
  • van de Wolfshaar, Karen

Abstract

The present study describes the responses of summer phytoplankton biomass to changes in top-down forcing (expressed as zooplankton mortality) in three ecosystems (the North Sea, the Baltic Sea and the Nordic Seas) across different 3D ecosystem models. In each of the model set-ups, we applied the same changes in the magnitude of mortality (±20%) of the highest trophic zooplankton level (Z1). Model results showed overall dampened responses of phytoplankton relative to Z1 biomass. Phytoplankton responses varied depending on the food web structure and trophic coupling represented in the models. Hence, a priori model assumptions were found to influence cascades and pathways in model estimates and, thus, become highly relevant when examining ecosystem pressures such as fishing and climate change. Especially, the different roles and parameterizations of additional zooplankton groups grazed by Z1, and their importance for the outcome, emphasized the need for better calibration data. Spatial variability was high within each model indicating that physics (hydrodynamics and temperature) and nutrient dynamics also play vital roles for ecosystem responses to top-down effects. In conclusion, the model comparison indicated that changes in top-down forcing in combination with the modelled food-web structure affect summer phytoplankton biomass and, thereby, indirectly influence water quality of the systems.

Suggested Citation

  • Maar, Marie & Butenschön, Momme & Daewel, Ute & Eggert, Anja & Fan, Wei & Hjøllo, Solfrid S. & Hufnagl, Marc & Huret, Martin & Ji, Rubao & Lacroix, Geneviève & Peck, Myron A. & Radtke, Hagen & Sailley, 2018. "Responses of summer phytoplankton biomass to changes in top-down forcing: Insights from comparative modelling," Ecological Modelling, Elsevier, vol. 376(C), pages 54-67.
  • Handle: RePEc:eee:ecomod:v:376:y:2018:i:c:p:54-67
    DOI: 10.1016/j.ecolmodel.2018.03.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380018300851
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.03.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yun, Kyungdahm & Hsiao, Jennifer & Jung, Myung-Pyo & Choi, In-Tae & Glenn, D. Michael & Shim, Kyo-Moon & Kim, Soo-Hyung, 2017. "Can a multi-model ensemble improve phenology predictions for climate change studies?," Ecological Modelling, Elsevier, vol. 362(C), pages 54-64.
    2. Vallina, S.M. & Cermeno, P. & Dutkiewicz, S. & Loreau, M. & Montoya, J.M., 2017. "Phytoplankton functional diversity increases ecosystem productivity and stability," Ecological Modelling, Elsevier, vol. 361(C), pages 184-196.
    3. Sailley, S.F. & Vogt, M. & Doney, S.C. & Aita, M.N. & Bopp, L. & Buitenhuis, E.T. & Hashioka, T. & Lima, I. & Le Quéré, C. & Yamanaka, Y., 2013. "Comparing food web structures and dynamics across a suite of global marine ecosystem models," Ecological Modelling, Elsevier, vol. 261, pages 43-57.
    4. Kevin McCann & Alan Hastings & Gary R. Huxel, 1998. "Weak trophic interactions and the balance of nature," Nature, Nature, vol. 395(6704), pages 794-798, October.
    5. Ransom A. Myers & Boris Worm, 2003. "Rapid worldwide depletion of predatory fish communities," Nature, Nature, vol. 423(6937), pages 280-283, May.
    6. Maar, Marie & Markager, Stiig & Madsen, Kristine Skovgaard & Windolf, Jørgen & Lyngsgaard, Maren Moltke & Andersen, Hans Estrup & Møller, Eva Friis, 2016. "The importance of local versus external nutrient loads for Chl a and primary production in the Western Baltic Sea," Ecological Modelling, Elsevier, vol. 320(C), pages 258-272.
    7. Travers, M. & Shin, Y.-J. & Jennings, S. & Machu, E. & Huggett, J.A. & Field, J.G. & Cury, P.M., 2009. "Two-way coupling versus one-way forcing of plankton and fish models to predict ecosystem changes in the Benguela," Ecological Modelling, Elsevier, vol. 220(21), pages 3089-3099.
    8. Maar, Marie & Møller, Eva Friis & Larsen, Jesper & Madsen, Kristine Skovgaard & Wan, Zhenwen & She, Jun & Jonasson, Lars & Neumann, Thomas, 2011. "Ecosystem modelling across a salinity gradient from the North Sea to the Baltic Sea," Ecological Modelling, Elsevier, vol. 222(10), pages 1696-1711.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chongliang & Chen, Yong & Ren, Yiping, 2016. "The efficacy of fisheries closure in rebuilding depleted stocks: Lessons from size-spectrum modeling," Ecological Modelling, Elsevier, vol. 332(C), pages 59-66.
    2. Speirs, Douglas C. & Greenstreet, Simon P.R. & Heath, Michael R., 2016. "Modelling the effects of fishing on the North Sea fish community size composition," Ecological Modelling, Elsevier, vol. 321(C), pages 35-45.
    3. Staffan Waldo & Anton Paulrud, 2017. "Reducing Greenhouse Gas Emissions in Fisheries: The Case of Multiple Regulatory Instruments in Sweden," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(2), pages 275-295, October.
    4. Dai, Chuanjun & Zhao, Min & Chen, Lansun, 2012. "Complex dynamic behavior of three-species ecological model with impulse perturbations and seasonal disturbances," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 84(C), pages 83-97.
    5. Nye, Janet A. & Gamble, Robert J. & Link, Jason S., 2013. "The relative impact of warming and removing top predators on the Northeast US large marine biotic community," Ecological Modelling, Elsevier, vol. 264(C), pages 157-168.
    6. George Van Voorn & Geerten Hengeveld & Jan Verhagen, 2020. "An agent based model representation to assess resilience and efficiency of food supply chains," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-27, November.
    7. Nurmi, Väinö & Ahtiainen, Heini, 2018. "Distributional Weights in Environmental Valuation and Cost-benefit Analysis: Theory and Practice," Ecological Economics, Elsevier, vol. 150(C), pages 217-228.
    8. Dina in ‘t Zandt & Zuzana Kolaříková & Tomáš Cajthaml & Zuzana Münzbergová, 2023. "Plant community stability is associated with a decoupling of prokaryote and fungal soil networks," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    9. Jordan S Goetze & Tim J Langlois & Joe McCarter & Colin A Simpfendorfer & Alec Hughes & Jacob Tingo Leve & Stacy D Jupiter, 2018. "Drivers of reef shark abundance and biomass in the Solomon Islands," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-16, July.
    10. Miehls, Andrea L. Jaeger & Mason, Doran M. & Frank, Kenneth A. & Krause, Ann E. & Peacor, Scott D. & Taylor, William W., 2009. "Invasive species impacts on ecosystem structure and function: A comparison of the Bay of Quinte, Canada, and Oneida Lake, USA, before and after zebra mussel invasion," Ecological Modelling, Elsevier, vol. 220(22), pages 3182-3193.
    11. Christina Caron, 2024. "Eroding Natural Capital: An Alternative Explanation for the Secular Decline in Productivity Growth," International Productivity Monitor, Centre for the Study of Living Standards, vol. 47, pages 109-147, Fall.
    12. Blasiak, Robert, 2015. "Balloon effects reshaping global fisheries," Marine Policy, Elsevier, vol. 57(C), pages 18-20.
    13. Yi Zhang & Yao Xu & Hao Kong & Gang Zhou, 2022. "Spatial-Temporal Evolution of Coupling Coordination between Green Transformation and the Quality of Economic Development," Sustainability, MDPI, vol. 14(23), pages 1-15, December.
    14. Vlad Rosca & Raluca Ignat, 2014. "The Sustainability of Fish Consumption in Romania: Customer Behaviour prior and after the Country`s Adherence to the EU," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 16(35), pages 243-243, February.
    15. Ainsworth, C.H. & Pitcher, T.J. & Heymans, J.J. & Vasconcellos, M., 2008. "Reconstructing historical marine ecosystems using food web models: Northern British Columbia from Pre-European contact to present," Ecological Modelling, Elsevier, vol. 216(3), pages 354-368.
    16. Vera Nikolić & Zlatko Nedić & Dubravka Škraba Jurlina & Vesna Djikanović & Tamara Kanjuh & Ana Marić & Predrag Simonović, 2023. "Status and Perspectives of the Ichthyofauna of the Labudovo okno Ramsar Site: An Analysis of 14 Years of Data," Sustainability, MDPI, vol. 15(12), pages 1-14, June.
    17. Gurkan, Zeren & Christensen, Asbjørn & Maar, Marie & Møller, Eva Friis & Madsen, Kristine Skovgaard & Munk, Peter & Mosegaard, Henrik, 2013. "Spatio-temporal dynamics of growth and survival of Lesser Sandeel early life-stages in the North Sea: Predictions from a coupled individual-based and hydrodynamic–biogeochemical model," Ecological Modelling, Elsevier, vol. 250(C), pages 294-306.
    18. Yacine, Youssef & Loeuille, Nicolas, 2022. "Stable coexistence in plant-pollinator-herbivore communities requires balanced mutualistic vs antagonistic interactions," Ecological Modelling, Elsevier, vol. 465(C).
    19. R. Quentin Grafton & Tom Kompas & Pham Van Ha, 2009. "Cod Today and None Tomorrow: The Economic Value of a Marine Reserve," Land Economics, University of Wisconsin Press, vol. 85(3), pages 454-469.
    20. Moses Majid Limuwa & Wales Singini & Trond Storebakken, 2018. "Is Fish Farming an Illusion for Lake Malawi Riparian Communities under Environmental Changes?," Sustainability, MDPI, vol. 10(5), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:376:y:2018:i:c:p:54-67. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.