IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v375y2018icp45-53.html
   My bibliography  Save this article

Population persistence in landscapes fragmented by roads: Disentangling isolation, mortality, and the effect of dispersal

Author

Listed:
  • Ceia-Hasse, Ana
  • Navarro, Laetitia M.
  • Borda-de-Água, Luís
  • Pereira, Henrique M.

Abstract

Linear infrastructures, one of several forms of land-use, are a major driver of biodiversity loss. Roads impact populations at many levels, with direct road mortality and barrier effect contributing to decreased population abundance, higher isolation and subdivision, and therefore to increased extinction risk. In this paper, we compared the effect of road mortality and of the barrier effect on population isolation, persistence and size, and assessed the interaction of these effects with dispersal. We used a spatially explicit, process-based model of population dynamics in landscapes fragmented by varying levels of road density. We modelled a barrier effect independently from road mortality by varying the probability with which individuals avoid crossing roads. Both road mortality and the barrier effect caused population isolation. While road mortality alone had stronger negative effects than the barrier effect without extra mortality, the latter also resulted in decreased population size. Yet, road avoidance could, in some cases, rescue populations from extinction. Populations with a large dispersal distance were more negatively affected as road mortality increased. However, when there was no road mortality they maintained larger sizes than populations with a short dispersal distance. Our results highlight the much higher relative importance of road mortality than the barrier effect for population size and persistence, and the importance of assessing relevant species traits for effective long-term transportation planning and conservation management. Our model can be used in species-specific situations and with real landscape configurations in applications such as conservation planning.

Suggested Citation

  • Ceia-Hasse, Ana & Navarro, Laetitia M. & Borda-de-Água, Luís & Pereira, Henrique M., 2018. "Population persistence in landscapes fragmented by roads: Disentangling isolation, mortality, and the effect of dispersal," Ecological Modelling, Elsevier, vol. 375(C), pages 45-53.
  • Handle: RePEc:eee:ecomod:v:375:y:2018:i:c:p:45-53
    DOI: 10.1016/j.ecolmodel.2018.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380016307505
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2018.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grimm, Volker & Berger, Uta, 2016. "Structural realism, emergence, and predictions in next-generation ecological modelling: Synthesis from a special issue," Ecological Modelling, Elsevier, vol. 326(C), pages 177-187.
    2. van Strien, Maarten J. & Grêt-Regamey, Adrienne, 2016. "How is habitat connectivity affected by settlement and road network configurations? Results from simulating coupled habitat and human networks," Ecological Modelling, Elsevier, vol. 342(C), pages 186-198.
    3. Renato Casagrandi & Marino Gatto, 1999. "A mesoscale approach to extinction risk in fragmented habitats," Nature, Nature, vol. 400(6744), pages 560-562, August.
    4. Ascensão, Fernando & Clevenger, Anthony & Santos-Reis, Margarida & Urbano, Paulo & Jackson, Nathan, 2013. "Wildlife–vehicle collision mitigation: Is partial fencing the answer? An agent-based model approach," Ecological Modelling, Elsevier, vol. 257(C), pages 36-43.
    5. Borda-de-Água, Luís & Grilo, Clara & Pereira, Henrique M., 2014. "Modeling the impact of road mortality on barn owl (Tyto alba) populations using age-structured models," Ecological Modelling, Elsevier, vol. 276(C), pages 29-37.
    6. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ricardo Martín & Víctor Yepes, 2021. "Bridging the Gap between Landscape and Management within Marinas: A Review," Land, MDPI, vol. 10(8), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Langhammer, Maria & Thober, Jule & Lange, Martin & Frank, Karin & Grimm, Volker, 2019. "Agricultural landscape generators for simulation models: A review of existing solutions and an outline of future directions," Ecological Modelling, Elsevier, vol. 393(C), pages 135-151.
    2. Lu, Yuanming & DeAngelis, Donald L. & Xia, Junfei & Jiang, Jiang, 2022. "Modeling the impact of invasive species litter on conditions affecting its spread and potential regime shift," Ecological Modelling, Elsevier, vol. 468(C).
    3. Salecker, Jan & Dislich, Claudia & Wiegand, Kerstin & Meyer, Katrin M. & Pe'er, Guy, 2019. "EFForTS-LGraf: A landscape generator for creating smallholder-driven land-use mosaics," EFForTS Discussion Paper Series 29, University of Goettingen, Collaborative Research Centre 990 "EFForTS, Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Transformation Systems (Sumatra, Indonesia)".
    4. Liukkonen, Lauri & Ayllón, Daniel & Kunnasranta, Mervi & Niemi, Marja & Nabe-Nielsen, Jacob & Grimm, Volker & Nyman, Anna-Maija, 2018. "Modelling movements of Saimaa ringed seals using an individual-based approach," Ecological Modelling, Elsevier, vol. 368(C), pages 321-335.
    5. Bathmann, Jasper & Peters, Ronny & Naumov, Dmitri & Fischer, Thomas & Berger, Uta & Walther, Marc, 2020. "The MANgrove–GroundwAter feedback model (MANGA) – Describing belowground competition based on first principles," Ecological Modelling, Elsevier, vol. 420(C).
    6. Ma, Ping & Han, Xiao-Hui & Lin, Yue & Moore, John & Guo, Yao-Xin & Yue, Ming, 2019. "Exploring the relative importance of biotic and abiotic factors that alter the self-thinning rule: Insights from individual-based modelling and machine-learning," Ecological Modelling, Elsevier, vol. 397(C), pages 16-24.
    7. Klimenko, Alexandra I. & Matushkin, Yury G. & Kolchanov, Nikolay A. & Lashin, Sergey A., 2019. "Spatial heterogeneity promotes antagonistic evolutionary scenarios in microbial community explained by ecological stratification: a simulation study," Ecological Modelling, Elsevier, vol. 399(C), pages 66-76.
    8. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    9. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    10. Jagadish, Arundhati & Dwivedi, Puneet & McEntire, Kira D. & Chandar, Mamta, 2019. "Agent-based modeling of “cleaner” cookstove adoption and woodfuel use: An integrative empirical approach," Forest Policy and Economics, Elsevier, vol. 106(C), pages 1-1.
    11. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    12. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    13. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    14. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    15. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    16. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    17. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    18. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    19. Meli, Mattia & Auclerc, Apolline & Palmqvist, Annemette & Forbes, Valery E. & Grimm, Volker, 2013. "Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails," Ecological Modelling, Elsevier, vol. 250(C), pages 338-351.
    20. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:375:y:2018:i:c:p:45-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.