IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v296y2015icp93-101.html
   My bibliography  Save this article

Simulations of ecosystem hydrological processes using a unified multi-scale model

Author

Listed:
  • Yang, Xiaofan
  • Liu, Chongxuan
  • Fang, Yilin
  • Hinkle, Ross
  • Li, Hong-Yi
  • Bailey, Vanessa
  • Bond-Lamberty, Ben

Abstract

This paper presents a unified multi-scale model (UMSM) that we developed to simulate hydrological processes in an ecosystem containing both surface water and groundwater. The UMSM approach modifies the Navier–Stokes equation by adding a Darcy force term to formulate a single set of equations to describe fluid momentum and uses a generalized equation to describe fluid mass balance. The advantage of the approach is that the single set of the equations can describe hydrological processes in both surface water and groundwater where different models are traditionally required to simulate fluid flow. This feature of the UMSM significantly facilitates modelling of hydrological processes in ecosystems, especially at locations where soil/sediment may be frequently inundated and drained in response to precipitation, regional hydrological and climate changes. In this paper, the UMSM was benchmarked using WASH123D, a model commonly used for simulating coupled surface water and groundwater flow. Disney Wilderness Preserve (DWP) site at the Kissimmee, Florida, where active field monitoring and measurements are ongoing to understand hydrological and biogeochemical processes, was then used as an example to illustrate the UMSM modelling approach. The simulations results demonstrated that the DWP site is subject to the frequent changes in soil saturation, the geometry and volume of surface water bodies, and groundwater and surface water exchange. All the hydrological phenomena in surface water and groundwater components including inundation and draining, river bank flow, groundwater table change, soil saturation, hydrological interactions between groundwater and surface water, and the migration of surface water and groundwater interfaces can be simultaneously simulated using the UMSM. Overall, the UMSM offers a cross-scale approach that is particularly suitable to simulate coupled surface and ground water flow in ecosystems with strong surface water and groundwater interactions.

Suggested Citation

  • Yang, Xiaofan & Liu, Chongxuan & Fang, Yilin & Hinkle, Ross & Li, Hong-Yi & Bailey, Vanessa & Bond-Lamberty, Ben, 2015. "Simulations of ecosystem hydrological processes using a unified multi-scale model," Ecological Modelling, Elsevier, vol. 296(C), pages 93-101.
  • Handle: RePEc:eee:ecomod:v:296:y:2015:i:c:p:93-101
    DOI: 10.1016/j.ecolmodel.2014.10.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014005304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.10.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mitsch, William J. & Gosselink, James G., 2000. "The value of wetlands: importance of scale and landscape setting," Ecological Economics, Elsevier, vol. 35(1), pages 25-33, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laxmi D. Bhatta & Sunita Chaudhary & Anju Pandit & Himlal Baral & Partha J. Das & Nigel E. Stork, 2016. "Ecosystem Service Changes and Livelihood Impacts in the Maguri-Motapung Wetlands of Assam, India," Land, MDPI, vol. 5(2), pages 1-14, June.
    2. Nisse Goldberg & Russell L. Watkins, 2021. "Spatial comparisons in wetland loss, mitigation, and flood hazards among watersheds in the lower St. Johns River basin, northeastern Florida, USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 109(2), pages 1743-1757, November.
    3. Hermine Vedogbeton & Robert J. Johnston, 2020. "Commodity Consistent Meta-Analysis of Wetland Values: An Illustration for Coastal Marsh Habitat," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(4), pages 835-865, April.
    4. Scemama, Pierre & Levrel, Harold, 2019. "Influence of the Organization of Actors in the Ecological Outcomes of Investment in Restoration of Biodiversity," Ecological Economics, Elsevier, vol. 157(C), pages 71-79.
    5. Peters, Jan & Baets, Bernard De & Verhoest, Niko E.C. & Samson, Roeland & Degroeve, Sven & Becker, Piet De & Huybrechts, Willy, 2007. "Random forests as a tool for ecohydrological distribution modelling," Ecological Modelling, Elsevier, vol. 207(2), pages 304-318.
    6. Posthumus, H. & Rouquette, J.R. & Morris, J. & Gowing, D.J.G. & Hess, T.M., 2010. "A framework for the assessment of ecosystem goods and services; a case study on lowland floodplains in England," Ecological Economics, Elsevier, vol. 69(7), pages 1510-1523, May.
    7. Yashna Devi Beeharry & Girish Bekaroo & Chandradeo Bokhoree & Michael Robert Phillips, 2022. "Impacts of sea-level rise on coastal zones of Mauritius: insights following calculation of a coastal vulnerability index," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 27-55, October.
    8. Jiang Li & Qiao Pan & You Peng & Tao Feng & Shaobo Liu & Xiaoxi Cai & Chixing Zhong & Yicheng Yin & Wenbo Lai, 2020. "Perceived Quality of Urban Wetland Parks: A Second-Order Factor Structure Equation Modeling," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    9. Hyun-Ju Cho & Jin-Hyo Kim & Eun-Jae Lee, 2023. "A Study on the Advancement of Spatial Maps and the Improvement of the Legal System as a Key Tool for Sustainable National Landscape Planning: Case Study of South Korea," Land, MDPI, vol. 12(5), pages 1-20, May.
    10. Natacha LASKOWSKI, 2013. "Optimal allocation of wetlands: Study on conflict between agriculture and fishery," Cahiers du GREThA (2007-2019) 2013-07, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    11. Carus, Jana & Heuner, Maike & Paul, Maike & Schröder, Boris, 2017. "Which factors and processes drive the spatio-temporal dynamics of brackish marshes?—Insights from development and parameterisation of a mechanistic vegetation model," Ecological Modelling, Elsevier, vol. 363(C), pages 122-136.
    12. Fulford, Richard & Yoskowitz, David & Russell, Marc & Dantin, Darrin & Rogers, John, 2016. "Habitat and recreational fishing opportunity in Tampa Bay: Linking ecological and ecosystem services to human beneficiaries," Ecosystem Services, Elsevier, vol. 17(C), pages 64-74.
    13. Soderqvist, Tore & Mitsch, William J. & Turner, R. Kerry, 2000. "Valuation of wetlands in a landscape and institutional perspective," Ecological Economics, Elsevier, vol. 35(1), pages 1-6, October.
    14. Namakando, Namakando, 2020. "Stakeholder perceptions of raw water quality and its management in Fetakgomo and Maruleng municipalities of Limpopo Province," Research Theses 334769, Collaborative Masters Program in Agricultural and Applied Economics.
    15. Aryal, Kishor & Ojha, Bhuwan Raj & Maraseni, Tek, 2021. "Perceived importance and economic valuation of ecosystem services in Ghodaghodi wetland of Nepal," Land Use Policy, Elsevier, vol. 106(C).
    16. Jackson Bunyangha & Agnes. W. N. Muthumbi & Anthony Egeru & Robert Asiimwe & Dunston W. Ulwodi & Nathan. N. Gichuki & Mwanjalolo. J. G. Majaliwa, 2022. "Preferred Attributes for Sustainable Wetland Management in Mpologoma Catchment, Uganda: A Discrete Choice Experiment," Land, MDPI, vol. 11(7), pages 1-18, June.
    17. Dariusz Świerk & Michał Krzyżaniak & Patryk Antoszewski & Adam Choryński, 2022. "Impact of Land Use Type on Macrophyte Occurrence in Ponds in a Changing Climate," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    18. Tianjie Li & Yan Huang & Chaoguang Gu & Fangbo Qiu, 2022. "Application of Geodesign Techniques for Ecological Engineered Landscaping of Urban River Wetlands: A Case Study of Yuhangtang River," Sustainability, MDPI, vol. 14(23), pages 1-21, November.
    19. D.C & Nwankwoala & H. O & Okujagu, 2021. "A Review Of Wetlands And Coastal Resources Of The Niger Delta: Potentials, Challenges And Prospects," Environment & Ecosystem Science (EES), Zibeline International Publishing, vol. 5(1), pages 37-46, March.
    20. Humberto Peraza-Villarreal & Alejandro Casas & Roberto Lindig-Cisneros & Alma Orozco-Segovia, 2019. "The Marceño Agroecosystem: Traditional Maize Production and Wetland Management in Tabasco, Mexico," Sustainability, MDPI, vol. 11(7), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:296:y:2015:i:c:p:93-101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.