IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v289y2014icp106-123.html
   My bibliography  Save this article

Mapping and monitoring Mount Graham red squirrel habitat with Lidar and Landsat imagery

Author

Listed:
  • Hatten, James R.

Abstract

The Mount Graham red squirrel (Tamiasciurus hudsonicus grahamensis) is an endemic subspecies located in the Pinaleño Mountains of southeast Arizona. Living in a conifer forest on a sky-island surrounded by desert, the Mount Graham red squirrel is one of the rarest mammals in North America. Over the last two decades, drought, insect infestations, and fire destroyed much of its habitat. A federal recovery team is working on a plan to recover the squirrel and detailed information is necessary on its habitat requirements and population dynamics. Toward that goal I developed and compared three probabilistic models of Mount Graham red squirrel habitat with a geographic information system and logistic regression. Each model contained the same topographic variables (slope, aspect, elevation), but the Landsat model contained a greenness variable (Normalized Difference Vegetation Index) extracted from Landsat, the Lidar model contained three forest-inventory variables extracted from lidar, while the Hybrid model contained Landsat and lidar variables. The Hybrid model produced the best habitat classification accuracy, followed by the Landsat and Lidar models, respectively. Landsat-derived forest greenness was the best predictor of habitat, followed by topographic (elevation, slope, aspect) and lidar (tree height, canopy bulk density, and live basal area) variables, respectively. The Landsat model's probabilities were significantly correlated with all 12 lidar variables, indicating its utility for habitat mapping. While the Hybrid model produced the best classification results, only the Landsat model was suitable for creating a habitat time series or habitat–population function between 1986 and 2013. The techniques I highlight should prove valuable in the development of Landsat- or lidar-based habitat models range wide.

Suggested Citation

  • Hatten, James R., 2014. "Mapping and monitoring Mount Graham red squirrel habitat with Lidar and Landsat imagery," Ecological Modelling, Elsevier, vol. 289(C), pages 106-123.
  • Handle: RePEc:eee:ecomod:v:289:y:2014:i:c:p:106-123
    DOI: 10.1016/j.ecolmodel.2014.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014003317
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Park Williams & Craig D. Allen & Alison K. Macalady & Daniel Griffin & Connie A. Woodhouse & David M. Meko & Thomas W. Swetnam & Sara A. Rauscher & Richard Seager & Henri D. Grissino-Mayer & Jeffre, 2013. "Temperature as a potent driver of regional forest drought stress and tree mortality," Nature Climate Change, Nature, vol. 3(3), pages 292-297, March.
    2. Hatten, James R. & Paxton, Eben H. & Sogge, Mark K., 2010. "Modeling the dynamic habitat and breeding population of Southwestern Willow Flycatcher," Ecological Modelling, Elsevier, vol. 221(13), pages 1674-1686.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sillero, Neftalí & Arenas-Castro, Salvador & Enriquez‐Urzelai, Urtzi & Vale, Cândida Gomes & Sousa-Guedes, Diana & Martínez-Freiría, Fernando & Real, Raimundo & Barbosa, A.Márcia, 2021. "Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling," Ecological Modelling, Elsevier, vol. 456(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ning Chen & Yifei Zhang & Fenghui Yuan & Changchun Song & Mingjie Xu & Qingwei Wang & Guangyou Hao & Tao Bao & Yunjiang Zuo & Jianzhao Liu & Tao Zhang & Yanyu Song & Li Sun & Yuedong Guo & Hao Zhang &, 2023. "Warming-induced vapor pressure deficit suppression of vegetation growth diminished in northern peatlands," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Orawan Kumdee & Md. Samim Hossain Molla & Kulwadee Kanavittaya & Jutamas Romkaew & Ed Sarobol & Sutkhet Nakasathien, 2023. "Morpho-Physiological and Biochemical Responses of Maize Hybrids under Recurrent Water Stress at Early Vegetative Stage," Agriculture, MDPI, vol. 13(9), pages 1-30, September.
    3. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    4. Kaoru Kakinuma & Aki Yanagawa & Takehiro Sasaki & Mukund Palat Rao & Shinjiro Kanae, 2019. "Socio-ecological Interactions in a Changing Climate: A Review of the Mongolian Pastoral System," Sustainability, MDPI, vol. 11(21), pages 1-17, October.
    5. Erickson, Adam & Nitschke, Craig & Coops, Nicholas & Cumming, Steven & Stenhouse, Gordon, 2015. "Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada," Ecological Modelling, Elsevier, vol. 313(C), pages 94-102.
    6. William M. Hammond & A. Park Williams & John T. Abatzoglou & Henry D. Adams & Tamir Klein & Rosana López & Cuauhtémoc Sáenz-Romero & Henrik Hartmann & David D. Breshears & Craig D. Allen, 2022. "Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Zhang, Yu & Liu, Xiaohong & Jiao, Wenzhe & Zhao, Liangju & Zeng, Xiaomin & Xing, Xiaoyu & Zhang, Lingnan & Hong, Yixue & Lu, Qiangqiang, 2022. "A new multi-variable integrated framework for identifying flash drought in the Loess Plateau and Qinling Mountains regions of China," Agricultural Water Management, Elsevier, vol. 265(C).
    8. Hatten, James R. & Slater, Gary L. & Treadwell, Jerrmaine L. & Stevenson, Matthew R., 2019. "A spatial model of streaked horned lark breeding habitat in the Columbia River, USA," Ecological Modelling, Elsevier, vol. 409(C), pages 1-1.
    9. Elbeltagi, Ahmed & Srivastava, Aman & Deng, Jinsong & Li, Zhibin & Raza, Ali & Khadke, Leena & Yu, Zhoulu & El-Rawy, Mustafa, 2023. "Forecasting vapor pressure deficit for agricultural water management using machine learning in semi-arid environments," Agricultural Water Management, Elsevier, vol. 283(C).
    10. Avery P. Hill & Christopher B. Field, 2021. "Forest fires and climate-induced tree range shifts in the western US," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    11. Bagdon, Benjamin A. & Huang, Ching-Hsun & Dewhurst, Stephen & Meador, Andrew Sánchez, 2017. "Climate Change Constrains the Efficiency Frontier When Managing Forests to Reduce Fire Severity and Maximize Carbon Storage," Ecological Economics, Elsevier, vol. 140(C), pages 201-214.
    12. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    13. Shi, Wenjiao & Liu, Yiting & Shi, Xiaoli, 2018. "Contributions of climate change to the boundary shifts in the farming-pastoral ecotone in northern China since 1970," Agricultural Systems, Elsevier, vol. 161(C), pages 16-27.
    14. Wu, Yali & Ma, Ying & Niu, Yuan & Song, Xianfang & Yu, Hui & Lan, Wei & Kang, Xiaoqi, 2021. "Warming changed seasonal water uptake patterns of summer maize," Agricultural Water Management, Elsevier, vol. 258(C).
    15. M. D. Petrie & J. B. Bradford & W. K. Lauenroth & D. R. Schlaepfer & C. M. Andrews & D. M. Bell, 2020. "Non-analog increases to air, surface, and belowground temperature extreme events due to climate change," Climatic Change, Springer, vol. 163(4), pages 2233-2256, December.
    16. Johnson, Matthew J. & Hatten, James R. & Holmes, Jennifer A. & Shafroth, Patrick B., 2017. "Identifying western yellow-billed cuckoo breeding habitat with a dual modelling approach," Ecological Modelling, Elsevier, vol. 347(C), pages 50-62.
    17. Stavros Sakellariou & Marios Spiliotopoulos & Nikolaos Alpanakis & Ioannis Faraslis & Pantelis Sidiropoulos & Georgios A. Tziatzios & George Karoutsos & Nicolas R. Dalezios & Nicholas Dercas, 2024. "Spatiotemporal Drought Assessment Based on Gridded Standardized Precipitation Index (SPI) in Vulnerable Agroecosystems," Sustainability, MDPI, vol. 16(3), pages 1-16, February.
    18. Diego Varga & Mariona Roigé & Josep Pintó & Marc Saez, 2019. "Assessing the Spatial Distribution of Biodiversity in a Changing Temperature Pattern: The Case of Catalonia, Spain," IJERPH, MDPI, vol. 16(20), pages 1-13, October.
    19. Yangyang Wu & Jinli Yang & Siliang Li & Chunzi Guo & Xiaodong Yang & Yue Xu & Fujun Yue & Haijun Peng & Yinchuan Chen & Lei Gu & Zhenghua Shi & Guangjie Luo, 2023. "NDVI-Based Vegetation Dynamics and Their Responses to Climate Change and Human Activities from 2000 to 2020 in Miaoling Karst Mountain Area, SW China," Land, MDPI, vol. 12(7), pages 1-24, June.
    20. Alyssa M. Willson & Anna T. Trugman & Jennifer S. Powers & Chris M. Smith-Martin & David Medvigy, 2022. "Climate and hydraulic traits interact to set thresholds for liana viability," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:289:y:2014:i:c:p:106-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.