IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v288y2014icp47-54.html
   My bibliography  Save this article

Modeling the effects of the Sloping Land Conversion Program on terrestrial ecosystem carbon dynamics in the Loess Plateau: A case study with Ansai County, Shaanxi province, China

Author

Listed:
  • Zhou, Decheng
  • Zhao, Shuqing
  • Liu, Shuguang
  • Zhang, Liangxia

Abstract

The Sloping Land Conversion Program (SLCP), preferentially initiated to reduce water loss and soil erosion in the Loess Plateau of China in 1999, is the largest eco-restoration project in the world in recent decades. This massive effort improved the vegetation conditions markedly and was expected to have a great potential to enhance terrestrial carbon (C) sequestration. However, the spatially-explicit C consequences of the SLCP remain largely unknown at the regional scale. Using Ansai County in the Loess Plateau as a case study, we assessed the impacts of the SLCP on ecosystem C dynamics based on the General Ensemble Biogeochemical Modeling System (GEMS). The results showed that ecosystem C stock (including C stored in biomass and soil) decreased slightly in the first five years after the implementation of the SLCP (i.e., 1999–2003) due to the low production of the newly forested land, and increased evidently (mostly in biomass) thereafter thanks primarily to the growth of young plantations. Overall, the study area functioned as a net C sink in the past three decades, yet the magnitude was greatly amplified by the SLCP, indicated by a C sink in 2004–2010 nearly twelve times that in 1978–1998 (41.5 vs. 3.5gCm−2yr−1). These results highlight the importance of the SLCP in promoting terrestrial C sequestration which may help mitigate climate change. Nevertheless, there were time-lags between the impact of the SLCP and the associated C dynamics in the eco-restored areas, particularly in the soil, calling for future efforts toward addressing long-term C consequences of the SLCP.

Suggested Citation

  • Zhou, Decheng & Zhao, Shuqing & Liu, Shuguang & Zhang, Liangxia, 2014. "Modeling the effects of the Sloping Land Conversion Program on terrestrial ecosystem carbon dynamics in the Loess Plateau: A case study with Ansai County, Shaanxi province, China," Ecological Modelling, Elsevier, vol. 288(C), pages 47-54.
  • Handle: RePEc:eee:ecomod:v:288:y:2014:i:c:p:47-54
    DOI: 10.1016/j.ecolmodel.2014.05.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380014002658
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2014.05.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. P. Ciais & Sébastien Gervois & N. Vuichard & S. L. Piao & N. Viovy, 2011. "Effects of land use change and management on the European cropland carbon balance," Post-Print hal-00716512, HAL.
    2. Larocque, Guy R. & Bhatti, Jagtar S. & Boutin, Robert & Chertov, Oleg, 2008. "Uncertainty analysis in carbon cycle models of forest ecosystems: Research needs and development of a theoretical framework to estimate error propagation," Ecological Modelling, Elsevier, vol. 219(3), pages 400-412.
    3. Shilong Piao & Jingyun Fang & Philippe Ciais & Philippe Peylin & Yao Huang & Stephen Sitch & Tao Wang, 2009. "The carbon balance of terrestrial ecosystems in China," Nature, Nature, vol. 458(7241), pages 1009-1013, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tianhong Li & Yao Ding, 2017. "Spatial disparity dynamics of ecosystem service values and GDP in Shaanxi Province, China in the last 30 years," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-20, March.
    2. Xiao Zhang & Yuanjie Deng & Mengyang Hou & Shunbo Yao, 2021. "Response of Land Use Change to the Grain for Green Program and Its Driving Forces in the Loess Hilly-Gully Region," Land, MDPI, vol. 10(2), pages 1-28, February.
    3. Zhouqiao Ren & Wanxin Zhan & Qiaobing Yue & Jianhua He, 2020. "Prioritizing Agricultural Patches for Reforestation to Improve Connectivity of Habitat Conservation Areas: A Guide to Grain-to-Green Project," Sustainability, MDPI, vol. 12(21), pages 1-17, November.
    4. Decheng Zhou & Lu Hao & John B. Kim & Peilong Liu & Cen Pan & Yongqiang Liu & Ge Sun, 2019. "Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau," Climatic Change, Springer, vol. 156(1), pages 31-50, September.
    5. Li, Jiasheng & Guo, Xiaomin & Chuai, Xiaowei & Xie, Fangjian & Yang, Feng & Gao, Runyi & Ji, Xuepeng, 2021. "Reexamine China’s terrestrial ecosystem carbon balance under land use-type and climate change," Land Use Policy, Elsevier, vol. 102(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lijuan Miao & Feng Zhu & Zhanli Sun & John C. Moore & Xuefeng Cui, 2016. "China’s Land-Use Changes during the Past 300 Years: A Historical Perspective," IJERPH, MDPI, vol. 13(9), pages 1-16, August.
    2. Guo, Ru & Zhao, Yaru & Shi, Yu & Li, Fengting & Hu, Jing & Yang, Haizhen, 2017. "Low carbon development and local sustainability from a carbon balance perspective," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 270-279.
    3. Jieming Chou & Yidan Hao & Yuan Xu & Weixing Zhao & Yuanmeng Li & Haofeng Jin, 2023. "Forest Carbon Sequestration Potential in China under Different SSP-RCP Scenarios," Sustainability, MDPI, vol. 15(9), pages 1-12, April.
    4. Zhen, Wei & Qin, Quande & Miao, Lu, 2023. "The greenhouse gas rebound effect from increased energy efficiency across China's staple crops," Energy Policy, Elsevier, vol. 173(C).
    5. Luyi Qiu & Kunying Niu & Wei He & Yaqi Hu, 2023. "Two Contribution Paths of Carbon Neutrality: Terrestrial Ecosystem Carbon Sinks and Anthropogenic Carbon Emission Reduction—A Case of Chongqing, China," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    6. Kai Yin & Dengsheng Lu & Yichen Tian & Qianjun Zhao & Chao Yuan, 2014. "Evaluation of Carbon and Oxygen Balances in Urban Ecosystems Using Land Use/Land Cover and Statistical Data," Sustainability, MDPI, vol. 7(1), pages 1-27, December.
    7. Lo, Yueh-Hsin & Blanco, Juan A. & Canals, Rosa M. & González de Andrés, Ester & San Emeterio, Leticia & Imbert, J. Bosco & Castillo, Federico J., 2015. "Land use change effects on carbon and nitrogen stocks in the Pyrenees during the last 150 years: A modeling approach," Ecological Modelling, Elsevier, vol. 312(C), pages 322-334.
    8. Qi Fu & Mengfan Gao & Yue Wang & Tinghui Wang & Xu Bi & Jinhua Chen, 2022. "Spatiotemporal Patterns and Drivers of the Carbon Budget in the Yangtze River Delta Region, China," Land, MDPI, vol. 11(8), pages 1-18, August.
    9. Jin, Ming & Han, Xulong & Li, Mingyu, 2023. "Trade-offs of multiple urban ecosystem services based on land-use scenarios in the Tumen River cross-border area," Ecological Modelling, Elsevier, vol. 482(C).
    10. Wei Wang & Wenjing Zeng & Weile Chen & Hui Zeng & Jingyun Fang, 2013. "Soil Respiration and Organic Carbon Dynamics with Grassland Conversions to Woodlands in Temperate China," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-10, August.
    11. Xiaochen Liu & Shuai Wang & Qianlai Zhuang & Xinxin Jin & Zhenxing Bian & Mingyi Zhou & Zhuo Meng & Chunlan Han & Xiaoyu Guo & Wenjuan Jin & Yufei Zhang, 2022. "A Review on Carbon Source and Sink in Arable Land Ecosystems," Land, MDPI, vol. 11(4), pages 1-17, April.
    12. Youngsu Park & Yujun Sun, 2018. "Sustainable Forest Management in North-East Asia: A Comparative Assessment between China and Republic of Korea," International Journal of Sciences, Office ijSciences, vol. 7(04), pages 102-114, April.
    13. Zhang, Fan & Li, Changsheng & Wang, Zheng & Glidden, Stanley & Grogan, Danielle S. & Li, Xuxiang & Cheng, Yan & Frolking, Steve, 2015. "Modeling impacts of management on farmland soil carbon dynamics along a climate gradient in Northwest China during 1981–2000," Ecological Modelling, Elsevier, vol. 312(C), pages 1-10.
    14. Mingjie Tian & Zhun Chen & Wei Wang & Taizheng Chen & Haiying Cui, 2022. "Land-Use Carbon Emissions in the Yellow River Basin from 2000 to 2020: Spatio-Temporal Patterns and Driving Mechanisms," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
    15. Zhang, Yan & Li, Juan & Fath, Brian D. & Zheng, Hongmei & Xia, Linlin, 2015. "Analysis of urban carbon metabolic processes and a description of sectoral characteristics: A case study of Beijing," Ecological Modelling, Elsevier, vol. 316(C), pages 144-154.
    16. Cong Zhang & Xiaojun Yao & Guoyu Wang & Huian Jin & Te Sha & Xinde Chu & Juan Zhang & Juan Cao, 2022. "Temporal and Spatial Variation of Land Use and Vegetation in the Three–North Shelter Forest Program Area from 2000 to 2020," Sustainability, MDPI, vol. 14(24), pages 1-21, December.
    17. Turley, Marianne C. & Ford, E. David, 2009. "Definition and calculation of uncertainty in ecological process models," Ecological Modelling, Elsevier, vol. 220(17), pages 1968-1983.
    18. Yunxiu Ma & Zhanjun Xu, 2023. "Construction of Low-Carbon Land Use and Management System in Coal Mining Areas," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    19. Decheng Zhou & Lu Hao & John B. Kim & Peilong Liu & Cen Pan & Yongqiang Liu & Ge Sun, 2019. "Potential impacts of climate change on vegetation dynamics and ecosystem function in a mountain watershed on the Qinghai-Tibet Plateau," Climatic Change, Springer, vol. 156(1), pages 31-50, September.
    20. Jian Ni, 2013. "Carbon storage in Chinese terrestrial ecosystems: approaching a more accurate estimate," Climatic Change, Springer, vol. 119(3), pages 905-917, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:288:y:2014:i:c:p:47-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.