IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v280y2014icp76-88.html
   My bibliography  Save this article

Population relevance of toxicant mediated changes in sex ratio in fish: An assessment using an individual-based zebrafish (Danio rerio) model

Author

Listed:
  • Hazlerigg, Charles R.E.
  • Tyler, Charles R.
  • Lorenzen, Kai
  • Wheeler, James R.
  • Thorbek, Pernille

Abstract

Ecological risk assessments (ERAs) of toxicants are predominantly based on data from laboratory tests on individuals. However, the protection goal is generally at the population level. Ecological modelling has the potential to link individual-level effects to population-level outcomes. Here we developed an individual-based zebrafish population model to study the possible population-level relevance of toxicant-mediated changes in sex ratio. The model was structured with sub-models based on empirical data (e.g. growth, reproduction, mortality) derived from a combination of our own laboratory and field experiments, the literature and theoretical concepts. The outputs of the default model were validated against size distributions for wild populations of zebrafish sampled in Bangladesh. Sensitivity analysis showed that population abundance was most sensitive to changes in density-dependent survival and the availability of refugia for juveniles.

Suggested Citation

  • Hazlerigg, Charles R.E. & Tyler, Charles R. & Lorenzen, Kai & Wheeler, James R. & Thorbek, Pernille, 2014. "Population relevance of toxicant mediated changes in sex ratio in fish: An assessment using an individual-based zebrafish (Danio rerio) model," Ecological Modelling, Elsevier, vol. 280(C), pages 76-88.
  • Handle: RePEc:eee:ecomod:v:280:y:2014:i:c:p:76-88
    DOI: 10.1016/j.ecolmodel.2013.12.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380013006030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2013.12.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Preuss, Thomas Günter & Hammers-Wirtz, Monika & Hommen, Udo & Rubach, Mascha Nadine & Ratte, Hans Toni, 2009. "Development and validation of an individual based Daphnia magna population model: The influence of crowding on population dynamics," Ecological Modelling, Elsevier, vol. 220(3), pages 310-329.
    2. Andrew M. J. Skinner & Penelope J. Watt, 2007. "Strategic egg allocation in the zebra fish, Danio rerio," Behavioral Ecology, International Society for Behavioral Ecology, vol. 18(5), pages 905-909.
    3. Rowena Spence & Carl Smith, 2006. "Mating preference of female zebrafish, Danio rerio, in relation to male dominance," Behavioral Ecology, International Society for Behavioral Ecology, vol. 17(5), pages 779-783, September.
    4. Esben M. Olsen & Mikko Heino & George R. Lilly & M. Joanne Morgan & John Brattey & Bruno Ernande & Ulf Dieckmann, 2004. "Maturation trends indicative of rapid evolution preceded the collapse of northern cod," Nature, Nature, vol. 428(6986), pages 932-935, April.
    5. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Yan & Blazer, Vicki S. & Iwanowicz, Luke R. & Schall, Megan Kepler & Smalling, Kelly & Tillitt, Donald E. & Wagner, Tyler, 2020. "Ecological risk assessment of environmental stress and bioactive chemicals to riverine fish populations: An individual-based model of smallmouth bass Micropterus dolomieu✰," Ecological Modelling, Elsevier, vol. 438(C).
    2. Accolla, Chiara & Vaugeois, Maxime & Rueda-Cediel, Pamela & Moore, Adrian & Marques, Gonçalo M. & Marella, Purvaja & Forbes, Valery E., 2020. "DEB-tox and Data Gaps: Consequences for individual-level outputs," Ecological Modelling, Elsevier, vol. 431(C).
    3. Strauss, Tido & Kulkarni, Devdutt & Preuss, Thomas G. & Hammers-Wirtz, Monika, 2016. "The secret lives of cannibals: Modelling density-dependent processes that regulate population dynamics in Chaoborus crystallinus," Ecological Modelling, Elsevier, vol. 321(C), pages 84-97.
    4. Mintram, Kate S. & Brown, A. Ross & Maynard, Samuel K. & Liu, Chun & Parker, Sarah-Jane & Tyler, Charles R. & Thorbek, Pernille, 2018. "Assessing population impacts of toxicant-induced disruption of breeding behaviours using an individual-based model for the three-spined stickleback," Ecological Modelling, Elsevier, vol. 387(C), pages 107-117.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strauss, Tido & Gabsi, Faten & Hammers-Wirtz, Monika & Thorbek, Pernille & Preuss, Thomas G., 2017. "The power of hybrid modelling: An example from aquatic ecosystems," Ecological Modelling, Elsevier, vol. 364(C), pages 77-88.
    2. Lamonica, Dominique & Herbach, Ulysse & Orias, Frédéric & Clément, Bernard & Charles, Sandrine & Lopes, Christelle, 2016. "Mechanistic modelling of daphnid-algae dynamics within a laboratory microcosm," Ecological Modelling, Elsevier, vol. 320(C), pages 213-230.
    3. Liu, Chun & Bednarska, Agnieszka J. & Sibly, Richard M. & Murfitt, Roger C. & Edwards, Peter & Thorbek, Pernille, 2014. "Incorporating toxicokinetics into an individual-based model for more realistic pesticide exposure estimates: A case study of the wood mouse," Ecological Modelling, Elsevier, vol. 280(C), pages 30-39.
    4. Accolla, Chiara & Vaugeois, Maxime & Rueda-Cediel, Pamela & Moore, Adrian & Marques, Gonçalo M. & Marella, Purvaja & Forbes, Valery E., 2020. "DEB-tox and Data Gaps: Consequences for individual-level outputs," Ecological Modelling, Elsevier, vol. 431(C).
    5. Strauss, Tido & Kulkarni, Devdutt & Preuss, Thomas G. & Hammers-Wirtz, Monika, 2016. "The secret lives of cannibals: Modelling density-dependent processes that regulate population dynamics in Chaoborus crystallinus," Ecological Modelling, Elsevier, vol. 321(C), pages 84-97.
    6. Imron, Muhammad Ali & Gergs, Andre & Berger, Uta, 2012. "Structure and sensitivity analysis of individual-based predator–prey models," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 71-81.
    7. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    8. Vimercati, Giovanni & Hui, Cang & Davies, Sarah J. & Measey, G. John, 2017. "Integrating age structured and landscape resistance models to disentangle invasion dynamics of a pond-breeding anuran," Ecological Modelling, Elsevier, vol. 356(C), pages 104-116.
    9. Jagadish, Arundhati & Dwivedi, Puneet & McEntire, Kira D. & Chandar, Mamta, 2019. "Agent-based modeling of “cleaner” cookstove adoption and woodfuel use: An integrative empirical approach," Forest Policy and Economics, Elsevier, vol. 106(C), pages 1-1.
    10. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    11. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    12. Jascha-Alexander Koch & Jens Lausen & Moritz Kohlhase, 2021. "Internalizing the externalities of overfunding: an agent-based model approach for analyzing the market dynamics on crowdfunding platforms," Journal of Business Economics, Springer, vol. 91(9), pages 1387-1430, November.
    13. Crevier, Lucas Phillip & Salkeld, Joseph H & Marley, Jessa & Parrott, Lael, 2021. "Making the best possible choice: Using agent-based modelling to inform wildlife management in small communities," Ecological Modelling, Elsevier, vol. 446(C).
    14. Ulfia A. Lenfers & Julius Weyl & Thomas Clemen, 2018. "Firewood Collection in South Africa: Adaptive Behavior in Social-Ecological Models," Land, MDPI, vol. 7(3), pages 1-17, August.
    15. David, Viviane & Joachim, Sandrine & Tebby, Cleo & Porcher, Jean-Marc & Beaudouin, Rémy, 2019. "Modelling population dynamics in mesocosms using an individual-based model coupled to a bioenergetics model," Ecological Modelling, Elsevier, vol. 398(C), pages 55-66.
    16. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    17. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    18. Meli, Mattia & Auclerc, Apolline & Palmqvist, Annemette & Forbes, Valery E. & Grimm, Volker, 2013. "Population-level consequences of spatially heterogeneous exposure to heavy metals in soil: An individual-based model of springtails," Ecological Modelling, Elsevier, vol. 250(C), pages 338-351.
    19. Groeneveld, Jürgen & Johst, Karin & Kawaguchi, So & Meyer, Bettina & Teschke, Mathias & Grimm, Volker, 2015. "How biological clocks and changing environmental conditions determine local population growth and species distribution in Antarctic krill (Euphausia superba): a conceptual model," Ecological Modelling, Elsevier, vol. 303(C), pages 78-86.
    20. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:280:y:2014:i:c:p:76-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.