IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v239y2012icp40-53.html
   My bibliography  Save this article

Modelling the impact of shallow landslides on forest structure in tropical montane forests

Author

Listed:
  • Dislich, Claudia
  • Huth, Andreas

Abstract

Shallow landslides are an important type of natural ecosystem disturbance in tropical montane forests. Due to landslides, vegetation and often also the upper soil layer are removed, and space for primary succession under altered environmental conditions is created. Little is known about how these altered conditions affect important aspects of forest recovery such as the establishment of new tree biomass and species composition. To address these questions we utilize a process-based forest simulation model and develop potential forest regrowth scenarios. We investigate how changes in different trees species characteristics influence forest recovery on landslide sites. The applied regrowth scenarios are: undisturbed regrowth (all tree species characteristics remain like in the undisturbed forest), reduced tree growth (induced by nutrient limitation), reduced tree establishment (due to thicket-forming vegetation and dispersal limitation) and increased tree mortality (due to post-landslide erosion and increased susceptibility). We then apply these scenarios to an evergreen tropical montane forest in southern Ecuador where landslides constitute a major source of natural disturbance. Our most important findings are

Suggested Citation

  • Dislich, Claudia & Huth, Andreas, 2012. "Modelling the impact of shallow landslides on forest structure in tropical montane forests," Ecological Modelling, Elsevier, vol. 239(C), pages 40-53.
  • Handle: RePEc:eee:ecomod:v:239:y:2012:i:c:p:40-53
    DOI: 10.1016/j.ecolmodel.2012.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380012001822
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2012.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Groeneveld, J. & Alves, L.F. & Bernacci, L.C. & Catharino, E.L.M. & Knogge, C. & Metzger, J.P. & Pütz, S. & Huth, A., 2009. "The impact of fragmentation and density regulation on forest succession in the Atlantic rain forest," Ecological Modelling, Elsevier, vol. 220(19), pages 2450-2459.
    2. Pütz, S. & Groeneveld, J. & Alves, L.F. & Metzger, J.P. & Huth, A., 2011. "Fragmentation drives tropical forest fragments to early successional states: A modelling study for Brazilian Atlantic forests," Ecological Modelling, Elsevier, vol. 222(12), pages 1986-1997.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bohn, Friedrich J. & Frank, Karin & Huth, Andreas, 2014. "Of climate and its resulting tree growth: Simulating the productivity of temperate forests," Ecological Modelling, Elsevier, vol. 278(C), pages 9-17.
    2. Mao, Zhun & Bourrier, Franck & Stokes, Alexia & Fourcaud, Thierry, 2014. "Three-dimensional modelling of slope stability in heterogeneous montane forest ecosystems," Ecological Modelling, Elsevier, vol. 273(C), pages 11-22.
    3. Fischer, Rico & Bohn, Friedrich & Dantas de Paula, Mateus & Dislich, Claudia & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Kazmierczak, Martin & Knapp, Nikolai & Lehmann, Sebastian & Paulick, Sebastia, 2016. "Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests," Ecological Modelling, Elsevier, vol. 326(C), pages 124-133.
    4. Singer, Alexander & Johst, Karin, 2017. "Transience after disturbance: Obligate species recovery dynamics depend on disturbance duration," Theoretical Population Biology, Elsevier, vol. 115(C), pages 81-88.
    5. Pandey, Hari Prasad & Gnyawali, Kaushal & Dahal, Kshitij & Pokhrel, Narayan Prasad & Maraseni, Tek Narayan, 2022. "Vegetation loss and recovery analysis from the 2015 Gorkha earthquake (7.8 Mw) triggered landslides," Land Use Policy, Elsevier, vol. 119(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fischer, Rico & Bohn, Friedrich & Dantas de Paula, Mateus & Dislich, Claudia & Groeneveld, Jürgen & Gutiérrez, Alvaro G. & Kazmierczak, Martin & Knapp, Nikolai & Lehmann, Sebastian & Paulick, Sebastia, 2016. "Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests," Ecological Modelling, Elsevier, vol. 326(C), pages 124-133.
    2. Pütz, S. & Groeneveld, J. & Alves, L.F. & Metzger, J.P. & Huth, A., 2011. "Fragmentation drives tropical forest fragments to early successional states: A modelling study for Brazilian Atlantic forests," Ecological Modelling, Elsevier, vol. 222(12), pages 1986-1997.
    3. Wätzold, Frank & Drechsler, Martin, 2014. "Agglomeration payment, agglomeration bonus or homogeneous payment?," Resource and Energy Economics, Elsevier, vol. 37(C), pages 85-101.
    4. Alexandre Sauquet & Sébastien Marchand & José Gustavo Feres, 2012. "Ecological Fiscal Incentives and Spatial Strategic Interactions: the Case of the ICMS-E in the Brazilian state of Paraná," CERDI Working papers halshs-00700474, HAL.
    5. Radchuk, Viktoriia & Johst, Karin & Groeneveld, Jürgen & Grimm, Volker & Schtickzelle, Nicolas, 2013. "Behind the scenes of population viability modeling: Predicting butterfly metapopulation dynamics under climate change," Ecological Modelling, Elsevier, vol. 259(C), pages 62-73.
    6. Wu, Mia M. & Liang, Yu & Taubert, Franziska & Huth, Andreas & Zhang, Min & Wang, Xugao, 2023. "Sensitivity of forest composition and productivity to climate change in mixed broadleaved-Korean pine forest of Northeastern China," Ecological Modelling, Elsevier, vol. 483(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:239:y:2012:i:c:p:40-53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.