IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i9p1329-1332.html
   My bibliography  Save this article

Who should wear mask against airborne infections? Altering the contact network for controlling the spread of contagious diseases

Author

Listed:
  • Schimit, P.H.T.
  • Monteiro, L.H.A.

Abstract

There are several ways of controlling the propagation of a contagious disease. For instance, to reduce the spreading of an airborne infection, individuals can be encouraged to remain in their homes and/or to wear face masks outside their domiciles. However, when a limited amount of masks is available, who should use them: the susceptible subjects, the infective persons or both populations? Here we employ susceptible-infective-recovered (SIR) models described in terms of ordinary differential equations and probabilistic cellular automata in order to investigate how the deletion of links in the random complex network representing the social contacts among individuals affects the dynamics of a contagious disease. The inspiration for this study comes from recent discussions about the impact of measures usually recommended by health public organizations for preventing the propagation of the swine influenza A (H1N1) virus. Our answer to this question can be valid for other eco-epidemiological systems.

Suggested Citation

  • Schimit, P.H.T. & Monteiro, L.H.A., 2010. "Who should wear mask against airborne infections? Altering the contact network for controlling the spread of contagious diseases," Ecological Modelling, Elsevier, vol. 221(9), pages 1329-1332.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:9:p:1329-1332
    DOI: 10.1016/j.ecolmodel.2010.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010000797
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schimit, P.H.T. & Monteiro, L.H.A., 2009. "On the basic reproduction number and the topological properties of the contact network: An epidemiological study in mainly locally connected cellular automata," Ecological Modelling, Elsevier, vol. 220(7), pages 1034-1042.
    2. Santibañez, S. & Fiore, A.E. & Merlin, T.L. & Redd, S., 2009. "A primer on strategies for prevention and control of seasonal and pandemic influenza," American Journal of Public Health, American Public Health Association, vol. 99(S2), pages 216-224.
    3. Monteiro, L.H.A. & Sasso, J.B. & Chaui Berlinck, J.G., 2007. "Continuous and discrete approaches to the epidemiology of viral spreading in populations taking into account the delay of incubation time," Ecological Modelling, Elsevier, vol. 201(3), pages 553-557.
    4. Su, Min & Hui, Cang & Zhang, Yanyu & Li, Zizhen, 2009. "How does the spatial structure of habitat loss affect the eco-epidemic dynamics?," Ecological Modelling, Elsevier, vol. 220(1), pages 51-59.
    5. Fuentes, M.A. & Kuperman, M.N., 1999. "Cellular automata and epidemiological models with spatial dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 267(3), pages 471-486.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Schimit, P.H.T. & Monteiro, L.H.A., 2012. "On estimating the basic reproduction number in distinct stages of a contagious disease spreading," Ecological Modelling, Elsevier, vol. 240(C), pages 156-160.
    2. Ramos, A.B.M. & Schimit, P.H.T., 2019. "Disease spreading on populations structured by groups," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 265-273.
    3. Schimit, P.H.T. & Monteiro, L.H.A., 2011. "A vaccination game based on public health actions and personal decisions," Ecological Modelling, Elsevier, vol. 222(9), pages 1651-1655.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, F.M.M. & Schimit, P.H.T., 2018. "Dengue fever spreading based on probabilistic cellular automata with two lattices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 499(C), pages 75-87.
    2. Schimit, P.H.T. & Monteiro, L.H.A., 2012. "On estimating the basic reproduction number in distinct stages of a contagious disease spreading," Ecological Modelling, Elsevier, vol. 240(C), pages 156-160.
    3. Ramos, A.B.M. & Schimit, P.H.T., 2019. "Disease spreading on populations structured by groups," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 265-273.
    4. Schimit, P.H.T. & Monteiro, L.H.A., 2009. "On the basic reproduction number and the topological properties of the contact network: An epidemiological study in mainly locally connected cellular automata," Ecological Modelling, Elsevier, vol. 220(7), pages 1034-1042.
    5. Frank H. Koch & Denys Yemshanov & Daniel W. McKenney & William D. Smith, 2009. "Evaluating Critical Uncertainty Thresholds in a Spatial Model of Forest Pest Invasion Risk," Risk Analysis, John Wiley & Sons, vol. 29(9), pages 1227-1241, September.
    6. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.
    7. Mugnaine, Michele & Gabrick, Enrique C. & Protachevicz, Paulo R. & Iarosz, Kelly C. & de Souza, Silvio L.T. & Almeida, Alexandre C.L. & Batista, Antonio M. & Caldas, Iberê L. & Szezech Jr, José D. & V, 2022. "Control attenuation and temporary immunity in a cellular automata SEIR epidemic model," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    8. Schimit, P.H.T. & Monteiro, L.H.A., 2011. "A vaccination game based on public health actions and personal decisions," Ecological Modelling, Elsevier, vol. 222(9), pages 1651-1655.
    9. Ceddia, M Graziano, 2010. "Managing infectious diseases over connected populations: a non-convex optimal control," MPRA Paper 22344, University Library of Munich, Germany, revised 2010.
    10. Fatima-Zohra Younsi & Ahmed Bounnekar & Djamila Hamdadou & Omar Boussaid, 2019. "Integration of Multiple Regression Model in an Epidemiological Decision Support System," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(06), pages 1755-1783, November.
    11. Monteiro, L.H.A. & Sasso, J.B. & Chaui Berlinck, J.G., 2007. "Continuous and discrete approaches to the epidemiology of viral spreading in populations taking into account the delay of incubation time," Ecological Modelling, Elsevier, vol. 201(3), pages 553-557.
    12. Chuangxia Huang & Jie Cao & Fenghua Wen & Xiaoguang Yang, 2016. "Stability Analysis of SIR Model with Distributed Delay on Complex Networks," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-22, August.
    13. Hui, Cang, 2011. "Forecasting population trend from the scaling pattern of occupancy," Ecological Modelling, Elsevier, vol. 222(3), pages 442-446.
    14. Mark C. Andersen & Heather Adams & Bruce Hope & Mark Powell, 2004. "Risk Analysis for Invasive Species: General Framework and Research Needs," Risk Analysis, John Wiley & Sons, vol. 24(4), pages 893-900, August.
    15. Lu Tang & Yiwang Zhou & Lili Wang & Soumik Purkayastha & Leyao Zhang & Jie He & Fei Wang & Peter X.‐K. Song, 2020. "A Review of Multi‐Compartment Infectious Disease Models," International Statistical Review, International Statistical Institute, vol. 88(2), pages 462-513, August.
    16. Schimit, P.H.T., 2016. "Evolutionary aspects of spatial Prisoner’s Dilemma in a population modeled by continuous probabilistic cellular automata and genetic algorithm," Applied Mathematics and Computation, Elsevier, vol. 290(C), pages 178-188.
    17. Huiyu Xuan & Lida Xu & Lu Li, 2009. "A CA-based epidemic model for HIV/AIDS transmission with heterogeneity," Annals of Operations Research, Springer, vol. 168(1), pages 81-99, April.
    18. Ilnytskyi, Jaroslav & Kozitsky, Yuri & Ilnytskyi, Hryhoriy & Haiduchok, Olena, 2016. "Stationary states and spatial patterning in an SIS epidemiology model with implicit mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 36-45.
    19. Bruno Bonté & Jean-Denis Mathias & Raphaël Duboz, 2012. "Moment Approximation of Infection Dynamics in a Population of Moving Hosts," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-10, December.
    20. Denys Yemshanov & Frank H. Koch & Daniel W. McKenney & Marla C. Downing & Frank Sapio, 2009. "Mapping Invasive Species Risks with Stochastic Models: A Cross‐Border United States‐Canada Application for Sirex noctilio Fabricius," Risk Analysis, John Wiley & Sons, vol. 29(6), pages 868-884, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:9:p:1329-1332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.