IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0277472.html
   My bibliography  Save this article

A novel fractional model for the projection of households using wealth index quintiles

Author

Listed:
  • Shakoor Ahmad
  • Shumaila Javeed
  • Saqlain Raza
  • Dumitru Baleanu

Abstract

Forecasting household assets provides a better opportunity to plan their socioeconomic activities for the future. Fractional mathematical models offer to model the asset-holding data into a piece of scientific evidence in addition to forecasting their future value. This research focuses on the development of a new fractional mathematical model based on the wealth index quintile (WIQ) data. To accomplish the objective, we used the system of coupled fractional differential equations by defining the fractional term with the Caputo derivative and verified it with the stability tests considering the steady-state solution. A numerical solution of the model was obtained using the Adams-Bashforth-Moulton method. To validate the model, we used real-time data obtained from the household series of surveys in Punjab, Pakistan. Different case studies that elucidate the effect of quintiles on the population are also presented. The accuracy of results between real-world and simulated data was compared using absolute and relative errors. The synchronization between the simulated results and real-time data verifies the formulation of the fractional WIQ model. This fractional model can be utilized to predict the approximation of the asset-holding of the households. Due to its relative nature, the model also provides the opportunity for the researchers to use the WIQs of their respective regions to forecast the households’ socioeconomic conditions.

Suggested Citation

  • Shakoor Ahmad & Shumaila Javeed & Saqlain Raza & Dumitru Baleanu, 2022. "A novel fractional model for the projection of households using wealth index quintiles," PLOS ONE, Public Library of Science, vol. 17(11), pages 1-16, November.
  • Handle: RePEc:plo:pone00:0277472
    DOI: 10.1371/journal.pone.0277472
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0277472
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0277472&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0277472?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Aydin Secer & Selvi Altun, 2018. "A New Operational Matrix of Fractional Derivatives to Solve Systems of Fractional Differential Equations via Legendre Wavelets," Mathematics, MDPI, vol. 6(11), pages 1-16, November.
    2. Wang, Zhen & Xie, Yingkang & Lu, Junwei & Li, Yuxia, 2019. "Stability and bifurcation of a delayed generalized fractional-order prey–predator model with interspecific competition," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 360-369.
    3. Vasily E. Tarasov, 2019. "Rules for Fractional-Dynamic Generalizations: Difficulties of Constructing Fractional Dynamic Models," Mathematics, MDPI, vol. 7(6), pages 1-50, June.
    4. Jean-Philippe Aguilar & Jan Korbel & Yuri Luchko, 2019. "Applications of the Fractional Diffusion Equation to Option Pricing and Risk Calculations," Mathematics, MDPI, vol. 7(9), pages 1-23, September.
    5. Vasily E. Tarasov, 2019. "On History of Mathematical Economics: Application of Fractional Calculus," Mathematics, MDPI, vol. 7(6), pages 1-28, June.
    6. Zidane Baitiche & Kaddour Guerbati & Mouffak Benchohra & Yong Zhou, 2019. "Boundary Value Problems for Hybrid Caputo Fractional Differential Equations," Mathematics, MDPI, vol. 7(3), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monica Aureliana Petcu & Liliana Ionescu-Feleaga & Bogdan-Ștefan Ionescu & Dumitru-Florin Moise, 2023. "A Decade for the Mathematics : Bibliometric Analysis of Mathematical Modeling in Economics, Ecology, and Environment," Mathematics, MDPI, vol. 11(2), pages 1-30, January.
    2. Yingkang Xie & Zhen Wang & Bo Meng, 2019. "Stability and Bifurcation of a Delayed Time-Fractional Order Business Cycle Model with a General Liquidity Preference Function and Investment Function," Mathematics, MDPI, vol. 7(9), pages 1-10, September.
    3. Vasily E. Tarasov, 2020. "Non-Linear Macroeconomic Models of Growth with Memory," Mathematics, MDPI, vol. 8(11), pages 1-22, November.
    4. Vasily E. Tarasov, 2024. "General Fractional Economic Dynamics with Memory," Mathematics, MDPI, vol. 12(15), pages 1-24, August.
    5. Jianguang Zhu & Kai Li & Binbin Hao, 2019. "Image Restoration by Second-Order Total Generalized Variation and Wavelet Frame Regularization," Complexity, Hindawi, vol. 2019, pages 1-16, March.
    6. Wu, Tianyu & Huang, Xia & Chen, Xiangyong & Wang, Jing, 2020. "Sampled-data H∞ exponential synchronization for delayed semi-Markov jump CDNs: A looped-functional approach," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    7. Wang, Xinhe & Lu, Junwei & Wang, Zhen & Li, Yuxia, 2020. "Dynamics of discrete epidemic models on heterogeneous networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 539(C).
    8. Ma, Tingting & Meng, Xinzhu & Hayat, Tasawar & Hobiny, Aatef, 2021. "Stability analysis and optimal harvesting control of a cross-diffusion prey-predator system," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    9. Ghanbari, Behzad, 2021. "On detecting chaos in a prey-predator model with prey’s counter-attack on juvenile predators," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
    10. Arsen Pskhu & Sergo Rekhviashvili, 2020. "Fractional Diffusion–Wave Equation with Application in Electrodynamics," Mathematics, MDPI, vol. 8(11), pages 1-13, November.
    11. Paula Morales-Bañuelos & Sebastian Elias Rodríguez Bojalil & Luis Alberto Quezada-Téllez & Guillermo Fernández-Anaya, 2025. "A General Conformable Black–Scholes Equation for Option Pricing," Mathematics, MDPI, vol. 13(10), pages 1-29, May.
    12. Zhang, Shuo & Liu, Lu & Xue, Dingyu, 2020. "Nyquist-based stability analysis of non-commensurate fractional-order delay systems," Applied Mathematics and Computation, Elsevier, vol. 377(C).
    13. Juan Liu & Jie Hu & Peter Yuen & Fuzhong Li, 2022. "A Seasonally Competitive M-Prey and N-Predator Impulsive System Modeled by General Functional Response for Integrated Pest Management," Mathematics, MDPI, vol. 10(15), pages 1-15, July.
    14. Shi, Jianping & He, Ke & Fang, Hui, 2022. "Chaos, Hopf bifurcation and control of a fractional-order delay financial system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 194(C), pages 348-364.
    15. Turkyilmazoglu, Mustafa & Altanji, Mohamed, 2023. "Fractional models of falling object with linear and quadratic frictional forces considering Caputo derivative," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    16. Shuai Li & Chengdai Huang & Xinyu Song, 2019. "Bifurcation Based-Delay Feedback Control Strategy for a Fractional-Order Two-Prey One-Predator System," Complexity, Hindawi, vol. 2019, pages 1-13, April.
    17. Dai, Mingcheng & Huang, Zhengguo & Xia, Jianwei & Meng, Bo & Wang, Jian & Shen, Hao, 2019. "Non-fragile extended dissipativity-based state feedback control for 2-D Markov jump delayed systems," Applied Mathematics and Computation, Elsevier, vol. 362(C), pages 1-1.
    18. Yang, Chengyu & Li, Fei & Kong, Qingkai & Chen, Xiangyong & Wang, Jian, 2021. "Asynchronous fault-tolerant control for stochastic jumping singularly perturbed systems: An H∞ sliding mode control scheme," Applied Mathematics and Computation, Elsevier, vol. 389(C).
    19. He, Hua & Wang, Wendi, 2024. "Asymptotically periodic solutions of fractional order systems with applications to population models," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    20. Kyriaki Tsilika, 2023. "Exploring the Contributions to Mathematical Economics: A Bibliometric Analysis Using Bibliometrix and VOSviewer," Mathematics, MDPI, vol. 11(22), pages 1-21, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0277472. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.