IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v221y2010i24p2887-2898.html
   My bibliography  Save this article

More asymmetric tree competition brings about more evapotranspiration and less runoff from the forest ecosystems: A simulation study

Author

Listed:
  • Toda, Motomu
  • Yokozawa, Masayuki
  • Emori, Seita
  • Hara, Toshihiko

Abstract

The present paper reports how stand size–structure dynamics due to competition between different-sized trees affect long-term forested water balance in Japanese cool-temperate planted stands (evergreen coniferous Cryptomeria japonica and deciduous coniferous Larix kaempferi stands) using a fully coupled multi-layered meteorological surface physics—terrestrial ecosystems model. The simulation captured the well-known annual variation in leaf area index (LAI) accurately with stand age in monocultured and even-aged stands; the occurrence of maximum LAI during the early growth stage and then a gradual decline followed by a steady state after the maximum LAI. The simulations also detected a high dependency of annual evapotranspiration (AETr) on LAI with stand age that is well known by prior observational researches. In the C. japonica (shade-tolerant late-successional species) stand, the relationship between annual net primary productivity of an individual tree (NPPind) and individual tree mass (w) changed from linear to a convex curve during self-thinning, indicating that the degree of asymmetric tree competition intensified with forest stand development. The higher degree of competitive asymmetry characterized by the convex-shaped NPPind–w relationship produced greater size inequality, i.e., the formation of trees stratified by height. Under such conditions, AETr and annual transpiration (ATr) were mainly regulated by larger trees. On the other hand, the NPPind–w relationships in the L. kaempferi (shade-intolerant early-successional species) stand were linear throughout the simulated period, indicating the lower degree of competitive asymmetry. Under such conditions, the growth of intermediate-sized trees was enhanced and these trees became a dominant source of AETr (and also ATr) during self-thinning. Furthermore, the sensitivity analysis of the effects of ecophysiological parameters such as foliage profile (i.e., vertical distribution of leaf area density) of an individual tree (distribution pattern is described by the parameter η), the maximum carboxylation velocity (Vcmax0) and biomass allocation pattern of individual plant growth (μ1) on AETr, ATr and annual runoff (ARoff) showed that the temporal trends of AETr, ATr, ARoff and NPPind–w relationships were completely the same as those in the control simulations. However, the NPPind–w relationship during self-thinning indicated higher degrees of competitive asymmetry when η or Vcmax0 were greater than those in the control simulation and generated greater AETr and ATr and thus smaller ARoff. We found that more asymmetric tree competition brings about greater size inequality between different-sized trees and thus more evapotranspiration and less runoff in a forest stand. Overall, our simulation approach revealed that not only LAI dynamics but also plant competition, and thus size–structure dynamics, in a forest ecosystem are essential to long-term future projections of forested water balance.

Suggested Citation

  • Toda, Motomu & Yokozawa, Masayuki & Emori, Seita & Hara, Toshihiko, 2010. "More asymmetric tree competition brings about more evapotranspiration and less runoff from the forest ecosystems: A simulation study," Ecological Modelling, Elsevier, vol. 221(24), pages 2887-2898.
  • Handle: RePEc:eee:ecomod:v:221:y:2010:i:24:p:2887-2898
    DOI: 10.1016/j.ecolmodel.2010.08.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380010004205
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2010.08.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Toda, Motomu & Yokozawa, Masayuki & Sumida, Akihiro & Watanabe, Tsutomu & Hara, Toshihiko, 2009. "Foliage profiles of individual trees determine competition, self-thinning, biomass and NPP of a Cryptomeria japonica forest stand: A simulation study based on a stand-scale process-based forest model," Ecological Modelling, Elsevier, vol. 220(18), pages 2272-2280.
    2. N. Gedney & P. M. Cox & R. A. Betts & O. Boucher & C. Huntingford & P. A. Stott, 2006. "Detection of a direct carbon dioxide effect in continental river runoff records," Nature, Nature, vol. 439(7078), pages 835-838, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Yan & Yang, Zhifeng & Liu, Qiang, 2013. "Nonlinear trend in streamflow and its response to climate change under complex ecohydrological patterns in the Yellow River Basin, China," Ecological Modelling, Elsevier, vol. 252(C), pages 220-227.
    2. Sawano, Shinji & Hotta, Norifumi & Tanaka, Nobuaki & Tsuboyama, Yoshio & Suzuki, Masakazu, 2015. "Development of a simple forest evapotranspiration model using a process-oriented model as a reference to parameterize data from a wide range of environmental conditions," Ecological Modelling, Elsevier, vol. 309, pages 93-109.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvaro Calzadilla & Katrin Rehdanz & Richard Betts & Pete Falloon & Andy Wiltshire & Richard Tol, 2013. "Climate change impacts on global agriculture," Climatic Change, Springer, vol. 120(1), pages 357-374, September.
    2. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Johan Grijsen, 2014. "Understanding the Impact of Climate Change on Hydropower : The Case of Cameroon," World Bank Publications - Reports 18243, The World Bank Group.
    4. Calzadilla, Alvaro & Zhu, Tingju & Rehdanz, Katrin & Tol, Richard S.J. & Ringler, Claudia, 2013. "Economywide impacts of climate change on agriculture in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 93(C), pages 150-165.
    5. Jaeil Cho & Hikaru Komatsu & Yadu Pokhrel & Pat Yeh & Taikan Oki & Shinjiro Kanae, 2011. "The effects of annual precipitation and mean air temperature on annual runoff in global forest regions," Climatic Change, Springer, vol. 108(1), pages 401-410, September.
    6. Muhammad Umer Masood & Saif Haider & Muhammad Rashid & Mohammed Suleman Aldlemy & Chaitanya B. Pande & Bojan Đurin & Raad Z. Homod & Fahad Alshehri & Ismail Elkhrachy, 2023. "Quantifying the Impacts of Climate and Land Cover Changes on the Hydrological Regime of a Complex Dam Catchment Area," Sustainability, MDPI, vol. 15(21), pages 1-28, October.
    7. Sergio M. Vicente‐Serrano & Tim R. McVicar & Diego G. Miralles & Yuting Yang & Miquel Tomas‐Burguera, 2020. "Unraveling the influence of atmospheric evaporative demand on drought and its response to climate change," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    8. Yiping Wu & Shuguang Liu & Omar Abdul-Aziz, 2012. "Hydrological effects of the increased CO 2 and climate change in the Upper Mississippi River Basin using a modified SWAT," Climatic Change, Springer, vol. 110(3), pages 977-1003, February.
    9. Cho, Jaeil & Oki, Taikan & Yeh, Pat J.-F. & Kanae, Shinjiro & Kim, Wonsik, 2010. "The effect of estimated PAR uncertainties on the physiological processes of biosphere models," Ecological Modelling, Elsevier, vol. 221(12), pages 1575-1579.
    10. Nakagawa, Yoshiaki & Yokozawa, Masayuki & Ito, Akihiko & Hara, Toshihiko, 2017. "Effectively tuning plant growth models with different spatial complexity: A statistical perspective," Ecological Modelling, Elsevier, vol. 361(C), pages 95-112.
    11. Boulanger, Pierre & Jomini, Patrick & Zhang, Xiao-guang & Costa, Catherine & Osborne, Michelle, 2010. "The Common Agricultural Policy and the French, European and World Economies," Conference papers 332019, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    12. Govind, Ajit & Cowling, Sharon & Kumari, Jyothi & Rajan, Nithya & Al-Yaari, Amen, 2015. "Distributed modeling of ecohydrological processes at high spatial resolution over a landscape having patches of managed forest stands and crop fields in SW Europe," Ecological Modelling, Elsevier, vol. 297(C), pages 126-140.
    13. Gregory McCabe & David Wolock, 2013. "Temporal and spatial variability of the global water balance," Climatic Change, Springer, vol. 120(1), pages 375-387, September.
    14. Thibault Lemaitre-Basset & Ludovic Oudin & Guillaume Thirel, 2022. "Evapotranspiration in hydrological models under rising CO2: a jump into the unknown," Climatic Change, Springer, vol. 172(3), pages 1-19, June.
    15. Danlu Cai & Klaus Fraedrich & Frank Sielmann & Shoupeng Zhu & Lijun Yu, 2023. "Attribution and Causality Analyses of Regional Climate Variability," Land, MDPI, vol. 12(4), pages 1-18, April.
    16. Sultan Ahmad Rizvi & Afeef Ahmad & Muhammad Latif & Abdul Sattar Shakir & Aftab Ahmad Khan & Waqas Naseem & Muhammad Riaz Gondal, 2021. "Implication of Remote Sensing Data under GIS Environment for Appraisal of Irrigation System Performance," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 4909-4926, November.
    17. Schwalm, C.R. & Huntzinger, D.N. & Cook, R.B. & Wei, Y. & Baker, I.T. & Neilson, R.P. & Poulter, B. & Caldwell, Peter & Sun, G. & Tian, H.Q. & Zeng, N., 2015. "How well do terrestrial biosphere models simulate coarse-scale runoff in the contiguous United States?," Ecological Modelling, Elsevier, vol. 303(C), pages 87-96.
    18. Zhao, Haigen & Ma, Yanfei, 2021. "Effects of various driving factors on potential evapotranspiration trends over the main grain-production area of China while accounting for vegetation dynamics," Agricultural Water Management, Elsevier, vol. 250(C).
    19. Lovelli, S. & Perniola, M. & Di Tommaso, T. & Ventrella, D. & Moriondo, M. & Amato, M., 2010. "Effects of rising atmospheric CO2 on crop evapotranspiration in a Mediterranean area," Agricultural Water Management, Elsevier, vol. 97(9), pages 1287-1292, September.
    20. Kai Duan & Ge Sun & Yang Zhang & Khairunnisa Yahya & Kai Wang & James M. Madden & Peter V. Caldwell & Erika C. Cohen & Steven G. McNulty, 2017. "Impact of air pollution induced climate change on water availability and ecosystem productivity in the conterminous United States," Climatic Change, Springer, vol. 140(2), pages 259-272, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:221:y:2010:i:24:p:2887-2898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.