IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v213y2008i3p463-467.html
   My bibliography  Save this article

Incorporating output variance in local sensitivity analysis for stochastic models

Author

Listed:
  • Bar Massada, Avi
  • Carmel, Yohay

Abstract

The output of stochastic models is a distribution of values, rather than a single value such as in deterministic models. Local sensitivity analyses of such models typically ignore the higher moments of the output distribution and instead use the distribution mean to represent model output. This might be simplistic, since the shape of the distribution might also be sensitive to changes in model parameters. Here, we construct a simple sensitivity index that captures also the shape of the output distribution, by incorporating its variance in addition to its mean. To evaluate its performance, we reconstructed an existing stochastic individual-based model for mosquitofish (Gambusia holbrooki) population. We compared the performance of the new sensitivity index to the standard sensitivity index (∂Y/∂P) that was calculated using the mean of the output distribution, by ranking model parameters according to their impact on the output. Sensitivity analyses using both methods identified different parameters as the most influential on model output, and rankings were inconsistent between methods regardless of the number of simulations used for generating the output distributions. It is shown that the new index indeed captured better the effect of parameters on model output since it accounted for the variance of the output distribution.

Suggested Citation

  • Bar Massada, Avi & Carmel, Yohay, 2008. "Incorporating output variance in local sensitivity analysis for stochastic models," Ecological Modelling, Elsevier, vol. 213(3), pages 463-467.
  • Handle: RePEc:eee:ecomod:v:213:y:2008:i:3:p:463-467
    DOI: 10.1016/j.ecolmodel.2008.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380008000550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2008.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cariboni, J. & Gatelli, D. & Liska, R. & Saltelli, A., 2007. "The role of sensitivity analysis in ecological modelling," Ecological Modelling, Elsevier, vol. 203(1), pages 167-182.
    2. Chu, Peter C. & Ivanov, Leonid M. & Margolina, Tetyana M., 2007. "On non-linear sensitivity of marine biological models to parameter variations," Ecological Modelling, Elsevier, vol. 206(3), pages 369-382.
    3. Lawrie, Jock & Hearne, John, 2007. "Reducing model complexity via output sensitivity," Ecological Modelling, Elsevier, vol. 207(2), pages 137-144.
    4. Tibor F. Liska, 2007. "The Liska model," Society and Economy, Akadémiai Kiadó, Hungary, vol. 29(3), pages 363-381, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melbourne-Thomas, J. & Johnson, C.R. & Fulton, E.A., 2011. "Characterizing sensitivity and uncertainty in a multiscale model of a complex coral reef system," Ecological Modelling, Elsevier, vol. 222(18), pages 3320-3334.
    2. Engel, Markus & Körner, Michael & Berger, Uta, 2018. "Plastic tree crowns contribute to small-scale heterogeneity in virgin beech forests—An individual-based modeling approach," Ecological Modelling, Elsevier, vol. 376(C), pages 28-39.
    3. Verwaeren, Jan & Van der Weeën, Pieter & De Baets, Bernard, 2015. "A search grid for parameter optimization as a byproduct of model sensitivity analysis," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 8-27.
    4. Belsare, Aniruddha V. & Gompper, Matthew E., 2015. "A model-based approach for investigation and mitigation of disease spillover risks to wildlife: Dogs, foxes and canine distemper in central India," Ecological Modelling, Elsevier, vol. 296(C), pages 102-112.
    5. Piacenza, Susan E. & Richards, Paul M. & Heppell, Selina S., 2017. "An agent-based model to evaluate recovery times and monitoring strategies to increase accuracy of sea turtle population assessments," Ecological Modelling, Elsevier, vol. 358(C), pages 25-39.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco A. Buendia-Hernandez & Maria J. Ortiz Bevia & Francisco J. Alvarez-Garcia & Antonio Ruizde Elvira, 2022. "Sensitivity of a Dynamic Model of Air Traffic Emissions to Technological and Environmental Factors," IJERPH, MDPI, vol. 19(22), pages 1-17, November.
    2. Lorscheid, Iris & Meyer, Matthias, 2016. "Divide and conquer: Configuring submodels for valid and efficient analyses of complex simulation models," Ecological Modelling, Elsevier, vol. 326(C), pages 152-161.
    3. Kanapaux, William & Kiker, Gregory A., 2013. "Development and testing of an object-oriented model for adaptively managing human disturbance of least tern (Sternula antillarum) nesting habitat," Ecological Modelling, Elsevier, vol. 268(C), pages 64-77.
    4. Chu-Agor, M.L. & Muñoz-Carpena, R. & Kiker, G.A. & Aiello-Lammens, M.E. & Akçakaya, H.R. & Convertino, M. & Linkov, I., 2012. "Simulating the fate of Florida Snowy Plovers with sea-level rise: Exploring research and management priorities with a global uncertainty and sensitivity analysis perspective," Ecological Modelling, Elsevier, vol. 224(1), pages 33-47.
    5. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    6. Gregory Hill & Steven Kolmes & Michael Humphreys & Rebecca McLain & Eric T. Jones, 2019. "Using decision support tools in multistakeholder environmental planning: restorative justice and subbasin planning in the Columbia River Basin," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 9(2), pages 170-186, June.
    7. Wernsdörfer, H. & Rossi, V. & Cornu, G. & Oddou-Muratorio, S. & Gourlet-Fleury, S., 2008. "Impact of uncertainty in tree mortality on the predictions of a tropical forest dynamics model," Ecological Modelling, Elsevier, vol. 218(3), pages 290-306.
    8. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    9. Pal, Saheb & Ghosh, Indrajit, 2023. "Dynamics of a coupled socio-environmental model: An application to global CO2 emissions," Ecological Modelling, Elsevier, vol. 478(C).
    10. Gilardelli, Carlo & Confalonieri, Roberto & Cappelli, Giovanni Alessandro & Bellocchi, Gianni, 2018. "Sensitivity of WOFOST-based modelling solutions to crop parameters under climate change," Ecological Modelling, Elsevier, vol. 368(C), pages 1-14.
    11. Priyadarshi, Anupam & Chandra, Ram & Kishi, Michio J. & Smith, S.Lan & Yamazaki, Hidekatsu, 2022. "Understanding plankton ecosystem dynamics under realistic micro-scale variability requires modeling at least three trophic levels," Ecological Modelling, Elsevier, vol. 467(C).
    12. Cadero, A. & Aubry, A. & Brun, F. & Dourmad, J.Y. & Salaün, Y. & Garcia-Launay, F., 2018. "Global sensitivity analysis of a pig fattening unit model simulating technico-economic performance and environmental impacts," Agricultural Systems, Elsevier, vol. 165(C), pages 221-229.
    13. Ratnarajah, Lavenia & Melbourne-Thomas, Jessica & Marzloff, Martin P. & Lannuzel, Delphine & Meiners, Klaus M. & Chever, Fanny & Nicol, Stephen & Bowie, Andrew R., 2016. "A preliminary model of iron fertilisation by baleen whales and Antarctic krill in the Southern Ocean: Sensitivity of primary productivity estimates to parameter uncertainty," Ecological Modelling, Elsevier, vol. 320(C), pages 203-212.
    14. Yi, Xuan & Zou, Rui & Guo, Huaicheng, 2016. "Global sensitivity analysis of a three-dimensional nutrients-algae dynamic model for a large shallow lake," Ecological Modelling, Elsevier, vol. 327(C), pages 74-84.
    15. Rouger, Baptiste & Goldringer, Isabelle & Barbillon, Pierre & Miramon, Anne & Naino Jika, Abdel Kader & Thomas, Mathieu, 2023. "Sensitivity analysis of a crop metapopulation model," Ecological Modelling, Elsevier, vol. 475(C).
    16. Bourhis, Yoann & Poggi, Sylvain & Mammeri, Youcef & Cortesero, Anne-Marie & Le Ralec, Anne & Parisey, Nicolas, 2015. "Perception-based foraging for competing resources: Assessing pest population dynamics at the landscape scale from heterogeneous resource distribution," Ecological Modelling, Elsevier, vol. 312(C), pages 211-221.
    17. Giménez-Romero, Àlex & Grau, Amalia & Hendriks, Iris E. & Matias, Manuel A., 2021. "Modelling parasite-produced marine diseases: The case of the mass mortality event of Pinna nobilis," Ecological Modelling, Elsevier, vol. 459(C).
    18. Hanqing Ma & Chunfeng Ma & Xin Li & Wenping Yuan & Zhengjia Liu & Gaofeng Zhu, 2020. "Sensitivity and Uncertainty Analyses of Flux-based Ecosystem Model towards Improvement of Forest GPP Simulation," Sustainability, MDPI, vol. 12(7), pages 1-18, March.
    19. Zhang, Wang & Tian, Yong & Sun, Zan & Zheng, Chunmiao, 2021. "How does plastic film mulching affect crop water productivity in an arid river basin?," Agricultural Water Management, Elsevier, vol. 258(C).
    20. Wu, Wenbin & Shibasaki, Ryosuke & Yang, Peng & Tan, Guoxin & Matsumura, Kan-ichiro & Sugimoto, Kenji, 2007. "Global-scale modelling of future changes in sown areas of major crops," Ecological Modelling, Elsevier, vol. 208(2), pages 378-390.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:213:y:2008:i:3:p:463-467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.