IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v252y2025ics0165176525001764.html
   My bibliography  Save this article

A new class of Z-valued INAR(1) models with application to mutual fund flows

Author

Listed:
  • Kang, Yao
  • Zhang, Yuqing
  • Wang, Shuhui
  • Zhao, Zhiwen

Abstract

Z-valued time series, which have discrete and quantitative observations on the set Z={...,−2,−1,0,1,2,…}, are commonly observed in economics and finance. Z-valued versions of integer-valued autoregressive (INAR) models are frequently employed to fit Z-valued time series. However, the existing Z-valued INAR models encounter difficulties in data generation mechanism and statistical inference. To enhance the modeling and prediction of Z-valued time series, this article constructs a class of Z-valued INAR(1) models from a new perspective and studies the related statistical inference problem. Empirically, an application to mutual fund flows demonstrates that our model offers satisfactory performance in economics and finance.

Suggested Citation

  • Kang, Yao & Zhang, Yuqing & Wang, Shuhui & Zhao, Zhiwen, 2025. "A new class of Z-valued INAR(1) models with application to mutual fund flows," Economics Letters, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:ecolet:v:252:y:2025:i:c:s0165176525001764
    DOI: 10.1016/j.econlet.2025.112339
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176525001764
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2025.112339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Hee-Young Kim & Yousung Park, 2008. "A non-stationary integer-valued autoregressive model," Statistical Papers, Springer, vol. 49(3), pages 485-502, July.
    2. Siem Jan Koopman & Rutger Lit & André Lucas, 2017. "Intraday Stochastic Volatility in Discrete Price Changes: The Dynamic Skellam Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1490-1503, October.
    3. Raju Maiti & Atanu Biswas & Bibhas Chakraborty, 2018. "Modelling of low count heavy tailed time series data consisting large number of zeros and ones," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 407-435, August.
    4. Yao Kang & Shuhui Wang & Dehui Wang & Fukang Zhu, 2023. "Analysis of zero-and-one inflated bounded count time series with applications to climate and crime data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 34-73, March.
    5. Tobias A. Möller & Christian H. Weiß & Hee-Young Kim & Andrei Sirchenko, 2018. "Modeling Zero Inflation in Count Data Time Series with Bounded Support," Methodology and Computing in Applied Probability, Springer, vol. 20(2), pages 589-609, June.
    6. Christian Weiß, 2008. "Thinning operations for modeling time series of counts—a survey," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 92(3), pages 319-341, August.
    7. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    8. Agosto, Arianna & Cavaliere, Giuseppe & Kristensen, Dennis & Rahbek, Anders, 2016. "Modeling corporate defaults: Poisson autoregressions with exogenous covariates (PARX)," Journal of Empirical Finance, Elsevier, vol. 38(PB), pages 640-663.
    9. Alain Latour, 1998. "Existence and Stochastic Structure of a Non‐negative Integer‐valued Autoregressive Process," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(4), pages 439-455, July.
    10. Claudia Czado & Tilmann Gneiting & Leonhard Held, 2009. "Predictive Model Assessment for Count Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1254-1261, December.
    11. Christian H. Weiß & Fukang Zhu, 2025. "Mean‐preserving rounding integer‐valued ARMA models," Journal of Time Series Analysis, Wiley Blackwell, vol. 46(3), pages 530-551, May.
    12. M. Kachour & L. Truquet, 2011. "A p‐Order signed integer‐valued autoregressive (SINAR(p)) model," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(3), pages 223-236, May.
    13. Miodrag S. Djordjević, 2017. "An extension on INAR models with discrete Laplace marginal distributions," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(12), pages 5896-5913, June.
    14. Raju Maiti & Atanu Biswas & Samarjit Das, 2015. "Time Series of Zero‐Inflated Counts and their Coherent Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(8), pages 694-707, December.
    15. R. Freeland, 2010. "True integer value time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(3), pages 217-229, September.
    16. Richard A. Davis & Konstantinos Fokianos & Scott H. Holan & Harry Joe & James Livsey & Robert Lund & Vladas Pipiras & Nalini Ravishanker, 2021. "Count Time Series: A Methodological Review," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(535), pages 1533-1547, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carallo, Giulia & Casarin, Roberto & Robert, Christian P., 2024. "Generalized Poisson difference autoregressive processes," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1359-1390.
    2. Weiß, Christian H. & Zhu, Fukang, 2024. "Conditional-mean multiplicative operator models for count time series," Computational Statistics & Data Analysis, Elsevier, vol. 191(C).
    3. Kachour Maher & Bakouch Hassan S. & Mohammadi Zohreh, 2023. "A New INAR(1) Model for ℤ-Valued Time Series Using the Relative Binomial Thinning Operator," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 243(2), pages 125-152, April.
    4. Yuhyeong Jang & Raanju R. Sundararajan & Wagner Barreto-Souza & Elizabeth Wheaton-Paramo, 2024. "Determining economic factors for sex trafficking in the United States using count time series regression," Empirical Economics, Springer, vol. 67(1), pages 337-354, July.
    5. Yang, Kai & Yu, Xinyang & Zhang, Qingqing & Dong, Xiaogang, 2022. "On MCMC sampling in self-exciting integer-valued threshold time series models," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    6. Huaping Chen & Qi Li & Fukang Zhu, 2022. "A new class of integer-valued GARCH models for time series of bounded counts with extra-binomial variation," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(2), pages 243-270, June.
    7. Aknouche, Abdelhakim & Gouveia, Sonia & Scotto, Manuel, 2023. "Random multiplication versus random sum: auto-regressive-like models with integer-valued random inputs," MPRA Paper 119518, University Library of Munich, Germany, revised 18 Dec 2023.
    8. Han Li & Kai Yang & Dehui Wang, 2017. "Quasi-likelihood inference for self-exciting threshold integer-valued autoregressive processes," Computational Statistics, Springer, vol. 32(4), pages 1597-1620, December.
    9. Younghoon Kim & Marie-Christine Duker & Zachary F. Fisher & Vladas Pipiras, 2023. "Latent Gaussian dynamic factor modeling and forecasting for multivariate count time series," Papers 2307.10454, arXiv.org, revised Apr 2025.
    10. Wagner Barreto-Souza & Marcelo Bourguignon, 2015. "A skew INAR(1) process on $${\mathbb {Z}}$$ Z," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 189-208, April.
    11. Kai Yang & Han Li & Dehui Wang & Chenhui Zhang, 2021. "Random coefficients integer-valued threshold autoregressive processes driven by logistic regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(4), pages 533-557, December.
    12. Huaping Chen & Qi Li & Fukang Zhu, 2023. "A covariate-driven beta-binomial integer-valued GARCH model for bounded counts with an application," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(7), pages 805-826, October.
    13. Xinyang Wang & Dehui Wang & Kai Yang, 2021. "Integer-valued time series model order shrinkage and selection via penalized quasi-likelihood approach," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(5), pages 713-750, July.
    14. Lu, Ye & Suthaharan, Neyavan, 2023. "Electricity price spike clustering: A zero-inflated GARX approach," Energy Economics, Elsevier, vol. 124(C).
    15. Côté, Benjamin & Cossette, Hélène & Marceau, Etienne, 2025. "Tree-structured Markov random fields with Poisson marginal distributions," Journal of Multivariate Analysis, Elsevier, vol. 207(C).
    16. Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
    17. Ali Ahmad & Christian Francq, 2016. "Poisson QMLE of Count Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(3), pages 291-314, May.
    18. Pedeli, Xanthi & Karlis, Dimitris, 2013. "Some properties of multivariate INAR(1) processes," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 213-225.
    19. Yousung Park & Hee-Young Kim, 2012. "Diagnostic checks for integer-valued autoregressive models using expected residuals," Statistical Papers, Springer, vol. 53(4), pages 951-970, November.
    20. Aknouche, Abdelhakim & Francq, Christian, 2021. "Count And Duration Time Series With Equal Conditional Stochastic And Mean Orders," Econometric Theory, Cambridge University Press, vol. 37(2), pages 248-280, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:252:y:2025:i:c:s0165176525001764. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.