IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v114y2012i3p329-331.html
   My bibliography  Save this article

Nonlinear dynamics in CEE stock markets indices

Author

Listed:
  • Caraiani, Petre

Abstract

We investigate the existence of nonlinearities in the dynamics of the returns of stock markets indices from CEE economies. We use several types of nonlinear tests. We discuss the implications of the results with respect to the efficient market hypothesis.

Suggested Citation

  • Caraiani, Petre, 2012. "Nonlinear dynamics in CEE stock markets indices," Economics Letters, Elsevier, vol. 114(3), pages 329-331.
  • Handle: RePEc:eee:ecolet:v:114:y:2012:i:3:p:329-331
    DOI: 10.1016/j.econlet.2011.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176511004617
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Scheinkman, Jose A & LeBaron, Blake, 1989. "Nonlinear Dynamics and Stock Returns," The Journal of Business, University of Chicago Press, vol. 62(3), pages 311-337, July.
    2. Barnett, William A. & Gallant, A. Ronald & Hinich, Melvin J. & Jungeilges, Jochen A. & Kaplan, Daniel T. & Jensen, Mark J., 1997. "A single-blind controlled competition among tests for nonlinearity and chaos," Journal of Econometrics, Elsevier, vol. 82(1), pages 157-192.
    3. Hsieh, David A, 1991. " Chaos and Nonlinear Dynamics: Application to Financial Markets," Journal of Finance, American Finance Association, vol. 46(5), pages 1839-1877, December.
    4. Barnett, William A. & Serletis, Apostolos, 2000. "Martingales, nonlinearity, and chaos," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 703-724, June.
    5. Apostolos Serletis, 1996. "Is There Chaos in Economic Time Series?," Canadian Journal of Economics, Canadian Economics Association, vol. 29(s1), pages 210-212, April.
    6. Takala, Kari & Viren, Matti, 1996. "Chaos and nonlinear dynamics in financial and nonfinancial time series: Evidence from Finland," European Journal of Operational Research, Elsevier, vol. 93(1), pages 155-172, August.
    7. John Barkoulas & Nickolaos Travlos, 1998. "Chaos in an emerging capital market? The case of the Athens Stock Exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 8(3), pages 231-243.
    8. Kian-Ping Lim & Venus Khim-Sen Liew, 2003. "Testing for Non-Linearity in ASEAN Financial Markets," Finance 0308002, EconWPA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Benjamín Duarte Duarte & Juan Manuel Mascareñas Pérez-Iñigo, 2014. "¿Han sido los mercados bursátiles eficientes informacionalmente?," REVISTA APUNTES DEL CENES, UNIVERSIDAD PEDAGOGICA Y TECNOLOGICA DE COLOMBIA, June.
    2. Mirzaee Ghazani, Majid & Khalili Araghi, Mansour, 2014. "Evaluation of the adaptive market hypothesis as an evolutionary perspective on market efficiency: Evidence from the Tehran stock exchange," Research in International Business and Finance, Elsevier, vol. 32(C), pages 50-59.
    3. Juan Benjamín Duarte Duarte & Juan Manuel Mascare?nas Pérez-Iñigo, 2014. "Comprobación de la eficiencia débil en los principales mercados financieros latinoamericanos," ESTUDIOS GERENCIALES, UNIVERSIDAD ICESI, November.
    4. Urquhart, Andrew & Hudson, Robert, 2013. "Efficient or adaptive markets? Evidence from major stock markets using very long run historic data," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 130-142.
    5. Vinodh Madhavan, 2014. "Investigating the nature of nonlinearity in Indian Exchange Traded Funds (ETFs)," Managerial Finance, Emerald Group Publishing, vol. 40(4), pages 395-415, March.

    More about this item

    Keywords

    Nonlinear models; Threshold autoregression; Smooth transition autoregression; Simulation techniques; Chaos theory;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:114:y:2012:i:3:p:329-331. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.