IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v147y2018icp74-83.html
   My bibliography  Save this article

Nutrients Metabolism of Agricultural Production in Argentina: NPK Input and Output Flows from 1961 to 2015

Author

Listed:
  • Díaz de Astarloa, D.A.
  • Pengue, W.A.

Abstract

Argentina has historically collected large amounts of nutrients in harvested products for worldwide consumption, relying on the high productivity of its soils. We estimated NPK nutrient flows and partial balance based on historical data for biomass production and fertilizer use, from 1961 to 2015, to better understand intensity and temporal variability of nutrient dynamics in Argentina. Estimated NPK output accumulated 113.6Mt. (78.4Mt. N, 10.8Mt. P, 24.4Mt. K), or an annual average of 67kg N, 9kg P and 21kg K per harvested hectare. Cumulate NPK supplied in fertilizers explained 15% N, 44% P and 4% K total extraction. Nutrient balance shows 53% (60Mt) of total NPK outputs came from sources other than fertilizer, fixation or deposition, implying soil depletion. Nutrient deficits cumulate −30Mt. N, −6Mt. P and −24Mt. K, equal to −26kg N, −5kg P and −20kg K per harvested hectare each year. Soybean was the most extractive crop, with 54% of accumulated NPK removed. The estimation approach is robust because it focuses on NPK major sinks and sources from long and reliable data sets, as an indirect way to assess soil nutrient use and stock tendency.

Suggested Citation

  • Díaz de Astarloa, D.A. & Pengue, W.A., 2018. "Nutrients Metabolism of Agricultural Production in Argentina: NPK Input and Output Flows from 1961 to 2015," Ecological Economics, Elsevier, vol. 147(C), pages 74-83.
  • Handle: RePEc:eee:ecolec:v:147:y:2018:i:c:p:74-83
    DOI: 10.1016/j.ecolecon.2018.01.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800916316639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2018.01.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schandl, Heinz & Schulz, Niels, 2002. "Changes in the United Kingdom's natural relations in terms of society's metabolism and land-use from 1850 to the present day," Ecological Economics, Elsevier, vol. 41(2), pages 203-221, May.
    2. Drechsel, Pay & Heffer, P. & Magen, H. & Mikkelsen, R. & Wichelns, D., 2015. "Managing water and fertilizer for sustainable agricultural intensification," IWMI Books, Reports H046805, International Water Management Institute.
    3. Rimski-Korsakov, Helena & Rubio, Gerardo & Lavado, Raul S., 2004. "Potential nitrate losses under different agricultural practices in the pampas region, Argentina," Agricultural Water Management, Elsevier, vol. 65(2), pages 83-94, March.
    4. Drechsel, Pay & Heffer, P. & Magen, H. & Mikkelsen, R. & Wichelns, D., 2015. "Managing water and fertilizer for sustainable agricultural intensification," IWMI Books, International Water Management Institute, number 208412.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Infante-Amate, Juan & Aguilera, Eduardo & de Molina, Manuel González, 2018. "Energy transition in Agri-food systems. Structural change, drivers and policy implications (Spain, 1960–2010)," Energy Policy, Elsevier, vol. 122(C), pages 570-579.
    2. Zijuan Zhao & Beilei Fan & Dong Liu, 2021. "Evaluating the Impact of Crop Layout Changes on N and P Nutrient Balance: A Case Study in the West Liaohe River Basin, China," Sustainability, MDPI, vol. 13(14), pages 1-21, July.
    3. Leguizamón, Yamila & Goldenberg, Matías G. & Jobbágy, Esteban & Seppelt, Ralf & Garibaldi, Lucas A., 2023. "Environmental potential for crop production and tenure regime influence fertilizer application and soil nutrient mining in soybean and maize crops," Agricultural Systems, Elsevier, vol. 210(C).
    4. Infante-Amate, Juan & Aguilera, Eduardo & Palmeri, Francesco & Guzmán, Gloria & Soto, David & García-Ruiz, Roberto & de Molina, Manuel González, 2018. "Land embodied in Spain’s biomass trade and consumption (1900–2008): Historical changes, drivers and impacts," Land Use Policy, Elsevier, vol. 78(C), pages 493-502.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    2. Deepranjan Sarkar & Amitava Rakshit & Ahmad I. Al-Turki & R. Z. Sayyed & Rahul Datta, 2021. "Connecting Bio-Priming Approach with Integrated Nutrient Management for Improved Nutrient Use Efficiency in Crop Species," Agriculture, MDPI, vol. 11(4), pages 1-18, April.
    3. Holden, Petra B. & Ziervogel, Gina & Hoffman, M. Timm & New, Mark G., 2021. "Transition from subsistence grazing to nature-based recreation: A nuanced view of land abandonment in a mountain social-ecological system, southwestern Cape, South Africa," Land Use Policy, Elsevier, vol. 105(C).
    4. Artiom Volkov & Mangirdas Morkunas & Tomas Balezentis & Vaida Šapolaitė, 2020. "Economic and Environmental Performance of the Agricultural Sectors of the Selected EU Countries," Sustainability, MDPI, vol. 12(3), pages 1-17, February.
    5. Çetin, Oner & Kara, Abdurrahman, 2019. "Assesment of water productivity using different drip irrigation systems for cotton," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    6. Uygan, Demet & Cetin, Oner & Alveroglu, Volkan & Sofuoglu, Aytug, 2021. "Improvement of water saving and economic productivity based on quotation with sugar content of sugar beet using linear move sprinkler irrigation," Agricultural Water Management, Elsevier, vol. 255(C).
    7. Georgios Bartzas & Konstantinos Komnitsas, 2020. "Environmental Risk Assessment in Agriculture: The Example of Pistacia vera L. Cultivation in Greece," Sustainability, MDPI, vol. 12(14), pages 1-20, July.
    8. Tei, Francesco & De Neve, Stefaan & de Haan, Janjo & Kristensen, Hanne Lakkenborg, 2020. "Nitrogen management of vegetable crops," Agricultural Water Management, Elsevier, vol. 240(C).
    9. Nguyen Bich Hong & Mitsuyasu Yabe, 2017. "Improvement in irrigation water use efficiency: a strategy for climate change adaptation and sustainable development of Vietnamese tea production," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1247-1263, August.
    10. Nandi, R. & Mondal, K. & Singh, K.C. & Saha, M. & Bandyopadhyay, P.K. & Ghosh, P.K., 2021. "Yield-water relationships of lentil grown under different rice establishments in Lower Gangetic Plain of India," Agricultural Water Management, Elsevier, vol. 246(C).
    11. Mehakpreet Kaur Randhawa & Salwinder Singh Dhaliwal & Vivek Sharma & Amardeep Singh Toor & Sandeep Sharma & Manpreet Kaur & Gayatri Verma, 2021. "Nutrient Use Efficiency as a Strong Indicator of Nutritional Security and Builders of Soil Nutrient Status through Integrated Nutrient Management Technology in a Rice-Wheat System in Northwestern Indi," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    12. Tahsina Sharmin Hoque & Ahmed Khairul Hasan & Md. Arefin Hasan & Nurun Nahar & Debasish Kumer Dey & Shamim Mia & Zakaria M. Solaiman & Md. Abdul Kader, 2022. "Nutrient Release from Vermicompost under Anaerobic Conditions in Two Contrasting Soils of Bangladesh and Its Effect on Wetland Rice Crop," Agriculture, MDPI, vol. 12(3), pages 1-17, March.
    13. So Pyay Thar & Robert J. Farquharson & Thiagarajah Ramilan & Sam Coggins & Deli Chen, 2021. "Recommended vs. Practice: Smallholder Fertilizer Decisions in Central Myanmar," Agriculture, MDPI, vol. 11(1), pages 1-20, January.
    14. Rosa Duarte & Vicente Pinilla & Ana Serrano, 2015. "Global water in a global world a long term study on agricultural virtual water flows in the world," Documentos de Trabajo dt2015-03, Facultad de Ciencias Económicas y Empresariales, Universidad de Zaragoza.
    15. Krausmann, Fridolin & Gingrich, Simone & Eisenmenger, Nina & Erb, Karl-Heinz & Haberl, Helmut & Fischer-Kowalski, Marina, 2009. "Growth in global materials use, GDP and population during the 20th century," Ecological Economics, Elsevier, vol. 68(10), pages 2696-2705, August.
    16. Julia K Steinberger & Fridolin Krausmann & Michael Getzner & Heinz Schandl & Jim West, 2013. "Development and Dematerialization: An International Study," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.
    17. Yoshida, Keisuke & Fishman, Tomer & Okuoka, Keijiro & Tanikawa, Hiroki, 2017. "Material stock's overburden: Automatic spatial detection and estimation of domestic extraction and hidden material flows," Resources, Conservation & Recycling, Elsevier, vol. 123(C), pages 165-175.
    18. Papathanasopoulou, Eleni & Jackson, Tim, 2008. "Fossil resource trade balances: Emerging trends for the UK," Ecological Economics, Elsevier, vol. 66(2-3), pages 492-505, June.
    19. Fridolin Krausmann & Marina Fischer-Kowalski & Heinz Schandl & Nina Eisenmenger, 2008. "The Global Sociometabolic Transition," Journal of Industrial Ecology, Yale University, vol. 12(5-6), pages 637-656, October.
    20. Cusso, Xavier & Garrabou, Ramon & Tello, Enric, 2006. "Social metabolism in an agrarian region of Catalonia (Spain) in 1860-1870: Flows, energy balance and land use," Ecological Economics, Elsevier, vol. 58(1), pages 49-65, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:147:y:2018:i:c:p:74-83. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.