IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v92y2015icp163-176.html

A Bayesian mixture model to quantify parameters of spatial clustering

Author

Listed:
  • Schäfer, Martin
  • Radon, Yvonne
  • Klein, Thomas
  • Herrmann, Sabrina
  • Schwender, Holger
  • Verveer, Peter J.
  • Ickstadt, Katja

Abstract

A new Bayesian approach for quantifying spatial clustering is proposed that employs a mixture of gamma distributions to model the squared distance of points to their second nearest neighbors. The method is designed to answer questions arising in biophysical research on nanoclusters of Ras proteins. It takes into account the presence of disturbing metacluster structures as well as non-clustering objects, both common among Ras clusters. Its focus lies on estimating the proportion of points lying in clusters, the mean cluster size and the mean cluster radius without depending on prior knowledge of the parameters. The performance of the model compared to other cluster methods is demonstrated in a comprehensive simulation study, employing a specific new class of spatial point processes, the double Matérn cluster process. Further results and arguments as well as data and code are available as supplementary material.

Suggested Citation

  • Schäfer, Martin & Radon, Yvonne & Klein, Thomas & Herrmann, Sabrina & Schwender, Holger & Verveer, Peter J. & Ickstadt, Katja, 2015. "A Bayesian mixture model to quantify parameters of spatial clustering," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 163-176.
  • Handle: RePEc:eee:csdana:v:92:y:2015:i:c:p:163-176
    DOI: 10.1016/j.csda.2015.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947315001619
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2015.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    2. A. J. Baddeley & J. Møller & R. Waagepetersen, 2000. "Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 54(3), pages 329-350, November.
    3. Chris Fraley & Adrian E. Raftery, 2007. "Bayesian Regularization for Normal Mixture Estimation and Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 24(2), pages 155-181, September.
    4. Ranjan Maitra & Ivan P. Ramler, 2009. "Clustering in the Presence of Scatter," Biometrics, The International Biometric Society, vol. 65(2), pages 341-352, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Fernández & Richard Arnold & Shirley Pledger & Ivy Liu & Roy Costilla, 2019. "Finite mixture biclustering of discrete type multivariate data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 117-143, March.
    2. Giandomenico Majone, 1972. "Social space and social distance: Some remarks on metric methods in data analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 6(2), pages 239-252, December.
    3. Claudia Quinteros-Cartaya & Guillermo Solorio-Magaña & Francisco Javier Núñez-Cornú & Felipe de Jesús Escalona-Alcázar & Diana Núñez, 2023. "Microearthquakes in the Guadalajara Metropolitan Zone, Mexico: evidence from buried active faults in Tesistán Valley, Zapopan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2797-2818, April.
    4. Arbia, Giuseppe & Espa, Giuseppe & Giuliani, Diego & Mazzitelli, Andrea, 2010. "Detecting the existence of space-time clustering of firms," Regional Science and Urban Economics, Elsevier, vol. 40(5), pages 311-323, September.
    5. repec:ers:journl:v:xxiv:y:2021:i:4b:p:659-667 is not listed on IDEAS
    6. Nicoletta D’Angelo & Marianna Siino & Antonino D’Alessandro & Giada Adelfio, 2022. "Local spatial log-Gaussian Cox processes for seismic data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 106(4), pages 633-671, December.
    7. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    8. Gabriella Piscopo & Marina Resta, 2017. "Applying spectral biclustering to mortality data," Risks, MDPI, vol. 5(2), pages 1-13, April.
    9. Giuseppe Espa & Giuseppe Arbia & Diego Giuliani, 2013. "Conditional versus unconditional industrial agglomeration: disentangling spatial dependence and spatial heterogeneity in the analysis of ICT firms’ distribution in Milan," Journal of Geographical Systems, Springer, vol. 15(1), pages 31-50, January.
    10. Xiaoqiang Liu & Ji Li & Lei Shao & Hongli Liu & Lei Ren & Lihua Zhu, 2023. "Transformer Fault Early Warning Analysis Based on Hierarchical Clustering Combined with Decision Trees," Energies, MDPI, vol. 16(3), pages 1-14, January.
    11. Edith Gabriel & Peter J. Diggle, 2009. "Second‐order analysis of inhomogeneous spatio‐temporal point process data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(1), pages 43-51, February.
    12. Roberto Rocci & Stefano Antonio Gattone & Roberto Di Mari, 2018. "A data driven equivariant approach to constrained Gaussian mixture modeling," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(2), pages 235-260, June.
    13. Diatta, Jean & Ralambondrainy, Henri, 2002. "The conceptual weak hierarchy associated with a dissimilarity measure," Mathematical Social Sciences, Elsevier, vol. 44(3), pages 301-319, December.
    14. Simon Blanchard & Wayne DeSarbo & A. Atalay & Nukhet Harmancioglu, 2012. "Identifying consumer heterogeneity in unobserved categories," Marketing Letters, Springer, vol. 23(1), pages 177-194, March.
    15. Jalilian, Abdollah, 2016. "On the higher order product density functions of a Neyman–Scott cluster point process," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 144-150.
    16. Arbia, Giuseppe & Espa, Giuseppe & Giuliani, Diego & Dickson, Maria Michela, 2014. "Spatio-temporal clustering in the pharmaceutical and medical device manufacturing industry: A geographical micro-level analysis," Regional Science and Urban Economics, Elsevier, vol. 49(C), pages 298-304.
    17. Michael Rennings & Philipp Baaden & Carolin Block & Marcus John & Stefanie Bröring, 2024. "Assessing emerging sustainability-oriented technologies: the case of precision agriculture," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 2969-2998, June.
    18. Sucharitha, Rahul Srinivas & Lee, Seokcheon, 2022. "GMM clustering for in-depth food accessibility pattern exploration and prediction model of food demand behavior," Socio-Economic Planning Sciences, Elsevier, vol. 83(C).
    19. Roberts, Leigh, 2014. "Consistent estimation of breakpoints in time series, with application to wavelet analysis of Citigroup returns," Working Paper Series 18815, Victoria University of Wellington, School of Economics and Finance.
    20. Pierre Hansen & Brigitte Jaumard & Bruno Simeone, 1996. "Espaliers: A generalization of dendrograms," Journal of Classification, Springer;The Classification Society, vol. 13(1), pages 107-127, March.
    21. Octavia MOISE, 2024. "Hierarchical classification of water service operators in Romania: an integrated analysis of financial and technical indicators," Romanian Journal of Economics, Institute of National Economy, vol. 59(2(68)), pages 206-223, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:92:y:2015:i:c:p:163-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.