IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v77y2014icp1-13.html
   My bibliography  Save this article

Joint inference about sensitivity and specificity at the optimal cut-off point associated with Youden index

Author

Listed:
  • Yin, Jingjing
  • Tian, Lili

Abstract

In diagnostic studies, both sensitivity and specificity depend on cut-off point and they are well-known measures for diagnostic accuracy. The diagnostic cut-off point is mostly unknown and needs to be determined by some optimization criteria out of which the one based on the Youden index has been widely adopted in practice. The estimation of the optimal cut-off point associated with Youden index depends on both diseased and healthy samples, henceforth, sensitivity and specificity at the estimated cut-off point are correlated. Therefore, it is desirable to make joint inference on both sensitivity and specificity at the estimated cut-off point. Several parametric and non-parametric approaches are proposed to estimate the joint confidence region of sensitivity and specificity at the cut-off point determined by the Youden index. A real data set is analyzed using the proposed approaches.

Suggested Citation

  • Yin, Jingjing & Tian, Lili, 2014. "Joint inference about sensitivity and specificity at the optimal cut-off point associated with Youden index," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 1-13.
  • Handle: RePEc:eee:csdana:v:77:y:2014:i:c:p:1-13
    DOI: 10.1016/j.csda.2014.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947314000450
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2014.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kelly Zou & W. J. Hall, 2000. "Two transformation models for estimating an ROC curve derived from continuous data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 621-631.
    2. Adimari Gianfranco & Chiogna Monica, 2010. "Simple Nonparametric Confidence Regions for the Evaluation of Continuous-Scale Diagnostic Tests," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-20, July.
    3. Li, Xinmin, 2009. "A generalized p-value approach for comparing the means of several log-normal populations," Statistics & Probability Letters, Elsevier, vol. 79(11), pages 1404-1408, June.
    4. Guangqin Ma & W.J. Hall, 1993. "Confidence Bands for Receiver Operating Characteristic Curves," Medical Decision Making, , vol. 13(3), pages 191-197, August.
    5. Samaradasa Weerahandi & Vance W. Berger, 1999. "Exact Inference for Growth Curves with Intraclass Correlation Structure," Biometrics, The International Biometric Society, vol. 55(3), pages 921-924, September.
    6. Lai, Chin-Ying & Tian, Lili & Schisterman, Enrique F., 2012. "Exact confidence interval estimation for the Youden index and its corresponding optimal cut-point," Computational Statistics & Data Analysis, Elsevier, vol. 56(5), pages 1103-1114.
    7. K. Krishnamoorthy & Yong Lu, 2003. "Inferences on the Common Mean of Several Normal Populations Based on the Generalized Variable Method," Biometrics, The International Biometric Society, vol. 59(2), pages 237-247, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rocío Aznar-Gimeno & Luis M. Esteban & Gerardo Sanz & Rafael del-Hoyo-Alonso & Ricardo Savirón-Cornudella, 2021. "Incorporating a New Summary Statistic into the Min–Max Approach: A Min–Max–Median, Min–Max–IQR Combination of Biomarkers for Maximising the Youden Index," Mathematics, MDPI, vol. 9(19), pages 1-17, October.
    2. Rocío Aznar-Gimeno & Luis M. Esteban & Rafael del-Hoyo-Alonso & Ángel Borque-Fernando & Gerardo Sanz, 2022. "A Stepwise Algorithm for Linearly Combining Biomarkers under Youden Index Maximization," Mathematics, MDPI, vol. 10(8), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Dan & Tian, Lili, 2017. "Parametric methods for confidence interval estimation of overlap coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 12-26.
    2. Tian, Lili & Wilding, Gregory E., 2008. "Confidence interval estimation of a common correlation coefficient," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4872-4877, June.
    3. Xu Guo & Hecheng Wu & Gaorong Li & Qiuyue Li, 2017. "Inference for the common mean of several Birnbaum–Saunders populations," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 941-954, April.
    4. Tian, Lili, 2010. "Confidence interval estimation of partial area under curve based on combined biomarkers," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 466-472, February.
    5. Roy, Anindya & Bose, Arup, 2009. "Coverage of generalized confidence intervals," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1384-1397, August.
    6. Ayanendranath Basu & Abhijit Mandal & Nirian Martín & Leandro Pardo, 2019. "A Robust Wald-Type Test for Testing the Equality of Two Means from Log-Normal Samples," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 85-107, March.
    7. Daniel J. Luckett & Eric B. Laber & Samer S. El‐Kamary & Cheng Fan & Ravi Jhaveri & Charles M. Perou & Fatma M. Shebl & Michael R. Kosorok, 2021. "Receiver operating characteristic curves and confidence bands for support vector machines," Biometrics, The International Biometric Society, vol. 77(4), pages 1422-1430, December.
    8. Y. Huang & M. S. Pepe, 2009. "A Parametric ROC Model-Based Approach for Evaluating the Predictiveness of Continuous Markers in Case–Control Studies," Biometrics, The International Biometric Society, vol. 65(4), pages 1133-1144, December.
    9. Bespalova, Olga, 2018. "Forecast Evaluation in Macroeconomics and International Finance. Ph.D. thesis, George Washington University, Washington, DC, USA," MPRA Paper 117706, University Library of Munich, Germany.
    10. Qiu, Zhiping & Peng, Limin & Manatunga, Amita & Guo, Ying, 2019. "A smooth nonparametric approach to determining cut-points of a continuous scale," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 186-210.
    11. Schaarschmidt, Frank, 2013. "Simultaneous confidence intervals for multiple comparisons among expected values of log-normal variables," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 265-275.
    12. Coolen-Maturi, Tahani & Elkhafifi, Faiza F. & Coolen, Frank P.A., 2014. "Three-group ROC analysis: A nonparametric predictive approach," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 69-81.
    13. Lin, Shu-Hui & Lee, Jack C., 2003. "Exact tests in simple growth curve models and one-way ANOVA with equicorrelation error structure," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 351-368, February.
    14. Li, Xinmin & Wang, Juan & Liang, Hua, 2011. "Comparison of several means: A fiducial based approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1993-2002, May.
    15. Chang, Ching-Hui & Pal, Nabendu, 2008. "Testing on the common mean of several normal distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 321-333, December.
    16. H. Zakerzadeh & A. Jafari, 2015. "Inference on the parameters of two Weibull distributions based on record values," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 25-40, March.
    17. Eugene Demidenko, 2012. "Confidence intervals and bands for the binormal ROC curve revisited," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 67-79, March.
    18. Zhongkai Liu & Howard D. Bondell, 2019. "Binormal Precision–Recall Curves for Optimal Classification of Imbalanced Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 141-161, April.
    19. Chang, Ming & You, Xuqun & Wen, Muqing, 2012. "Testing the homogeneity of inverse Gaussian scale-like parameters," Statistics & Probability Letters, Elsevier, vol. 82(10), pages 1755-1760.
    20. Kelly Zou & W. J. Hall, 2002. "Semiparametric and parametric transformation models for comparing diagnostic markers with paired design," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(6), pages 803-816.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:77:y:2014:i:c:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.