IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v60y2013icp157-168.html
   My bibliography  Save this article

Most powerful rank tests for perfect rankings

Author

Listed:
  • Frey, Jesse
  • Wang, Le

Abstract

We consider the problem of testing for perfect rankings in ranked set sampling (RSS). By using a new algorithm for computing the probability that specified independent random variables have a particular ordering, we find most powerful rank tests of the null hypothesis of perfect rankings against fully specified alternatives. We compare the power of these most powerful rank tests to that of existing rank tests in the literature, and we find that the existing tests are surprisingly close to optimal over a wide range of alternatives to perfect rankings. This finding holds both for balanced RSS and for unbalanced RSS cases where the different ranks are not equally represented in the sample. We find that the best of the existing tests is the test that rejects when the null probability of the observed ranks is small, and we provide a new, more efficient R function for computing the test statistic.

Suggested Citation

  • Frey, Jesse & Wang, Le, 2013. "Most powerful rank tests for perfect rankings," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 157-168.
  • Handle: RePEc:eee:csdana:v:60:y:2013:i:c:p:157-168
    DOI: 10.1016/j.csda.2012.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312004148
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Frey, Jesse & Ozturk, Omer & Deshpande, Jayant V., 2007. "Nonparametric Tests for Perfect Judgment Rankings," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 708-717, June.
    2. Steven N. MacEachern & Ömer Öztürk & Douglas A. Wolfe & Gregory V. Stark, 2002. "A new ranked set sample estimator of variance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(2), pages 177-188, May.
    3. Alexander Shapiro & Jos Berge, 2002. "Statistical inference of minimum rank factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 67(1), pages 79-94, March.
    4. McIntyre, G.A., 2005. "A Method for Unbiased Selective Sampling, Using Ranked Sets," The American Statistician, American Statistical Association, vol. 59, pages 230-232, August.
    5. Lynne Stokes, 1995. "Parametric ranked set sampling," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(3), pages 465-482, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ehsan Zamanzade & Michael Vock, 2018. "Some nonparametric tests of perfect judgment ranking for judgment post stratification," Statistical Papers, Springer, vol. 59(3), pages 1085-1100, September.
    2. Zamanzade, Elham & Parvardeh, Afshin & Asadi, Majid, 2019. "Estimation of mean residual life based on ranked set sampling," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 35-55.
    3. Hamid Rahmani & Mostafa Razmkhah, 2017. "Perfect ranking test in moving extreme ranked set sampling," Statistical Papers, Springer, vol. 58(3), pages 855-875, September.
    4. Nikolay I. Nikolov & Eugenia Stoimenova, 2020. "Mallows’ models for imperfect ranking in ranked set sampling," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(3), pages 459-484, September.
    5. Zamanzade, Ehsan & Vock, Michael, 2015. "Variance estimation in ranked set sampling using a concomitant variable," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 1-5.
    6. Saeid Amiri & Reza Modarres & Silvelyn Zwanzig, 2017. "Tests of perfect judgment ranking using pseudo-samples," Computational Statistics, Springer, vol. 32(4), pages 1309-1322, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesse Frey & Timothy G. Feeman, 2017. "Efficiency comparisons for partially rank-ordered set sampling," Statistical Papers, Springer, vol. 58(4), pages 1149-1163, December.
    2. Cesar Augusto Taconeli & Suely Ruiz Giolo, 2020. "Maximum likelihood estimation based on ranked set sampling designs for two extensions of the Lindley distribution with uncensored and right-censored data," Computational Statistics, Springer, vol. 35(4), pages 1827-1851, December.
    3. Jesse Frey & Omer Ozturk, 2011. "Constrained estimation using judgment post-stratification," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(4), pages 769-789, August.
    4. Jesse Frey, 2012. "Constrained nonparametric estimation of the mean and the CDF using ranked-set sampling with a covariate," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(2), pages 439-456, April.
    5. Zamanzade, Ehsan & Vock, Michael, 2015. "Variance estimation in ranked set sampling using a concomitant variable," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 1-5.
    6. Xinlei Wang & Ke Wang & Johan Lim, 2012. "Isotonized CDF Estimation from Judgment Poststratification Data with Empty Strata," Biometrics, The International Biometric Society, vol. 68(1), pages 194-202, March.
    7. Jesse Frey & Timothy Feeman, 2013. "Variance estimation using judgment post-stratification," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 551-569, June.
    8. Zamanzade, Elham & Parvardeh, Afshin & Asadi, Majid, 2019. "Estimation of mean residual life based on ranked set sampling," Computational Statistics & Data Analysis, Elsevier, vol. 135(C), pages 35-55.
    9. Zamanzade, Ehsan & Wang, Xinlei, 2017. "Estimation of population proportion for judgment post-stratification," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 257-269.
    10. Ehsan Zamanzade & Michael Vock, 2018. "Some nonparametric tests of perfect judgment ranking for judgment post stratification," Statistical Papers, Springer, vol. 59(3), pages 1085-1100, September.
    11. Elham Zamanzade & Majid Asadi & Afshin Parvardeh & Ehsan Zamanzade, 2023. "A ranked-based estimator of the mean past lifetime with an application," Statistical Papers, Springer, vol. 64(1), pages 161-177, February.
    12. Wangxue Chen & Rui Yang & Dongsen Yao & Chunxian Long, 2021. "Pareto parameters estimation using moving extremes ranked set sampling," Statistical Papers, Springer, vol. 62(3), pages 1195-1211, June.
    13. Xinlei Wang & Johan Lim & Seung-Jean Kim & Kyu Hahn, 2015. "Estimating cell probabilities in contingency tables with constraints on marginals/conditionals by geometric programming with applications," Computational Statistics, Springer, vol. 30(1), pages 107-129, March.
    14. M. Mahdizadeh & Ehsan Zamanzade, 2022. "New insights on goodness-of-fit tests for ranked set samples," Statistical Papers, Springer, vol. 63(6), pages 1777-1799, December.
    15. Naif Alotaibi & A. S. Al-Moisheer & Ibrahim Elbatal & Mansour Shrahili & Mohammed Elgarhy & Ehab M. Almetwally, 2023. "Half Logistic Inverted Nadarajah–Haghighi Distribution under Ranked Set Sampling with Applications," Mathematics, MDPI, vol. 11(7), pages 1-32, April.
    16. Anastasiou, Andreas, 2017. "Bounds for the normal approximation of the maximum likelihood estimator from m-dependent random variables," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 171-181.
    17. Denter, Philipp & Sisak, Dana, 2015. "Do polls create momentum in political competition?," Journal of Public Economics, Elsevier, vol. 130(C), pages 1-14.
    18. Salgado Alfredo, 2018. "Incomplete Information and Costly Signaling in College Admissions," Working Papers 2018-23, Banco de México.
    19. Barabesi, Lucio & El-Sharaawi, Abdel, 2001. "The efficiency of ranked set sampling for parameter estimation," Statistics & Probability Letters, Elsevier, vol. 53(2), pages 189-199, June.
    20. Albrecht, James & Anderson, Axel & Vroman, Susan, 2010. "Search by committee," Journal of Economic Theory, Elsevier, vol. 145(4), pages 1386-1407, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:60:y:2013:i:c:p:157-168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.