IDEAS home Printed from
   My bibliography  Save this article

Identifying anomalous signals in GPS data using HMMs: An increased likelihood of earthquakes?


  • Wang, Ting
  • Bebbington, Mark


A way of combining a hidden Markov model (HMM) and mutual information analysis is proposed to detect possible precursory signals for earthquakes from Global Positioning System (GPS) data. A non-linear filter, which measures the short-term deformation rate ranges, is introduced to extract anomalous signals from the GPS measurements of ground deformation. An HMM fitted to the filtered GPS measurements can classify the deformation data into different states which form proxies for elements of the earthquake cycle. Mutual information is then used to examine whether any of these states possesses any precursory characteristics. The class of GPS measurements identified by the HMM as having the largest variation of deformation rate shows some precursory information and is hence considered as a “precursory state”. The performance of possible earthquake forecasts is assessed by comparing a decision rule (based on model characteristics) with the actual outcome.

Suggested Citation

  • Wang, Ting & Bebbington, Mark, 2013. "Identifying anomalous signals in GPS data using HMMs: An increased likelihood of earthquakes?," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 27-44.
  • Handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:27-44
    DOI: 10.1016/j.csda.2011.09.019

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Bulla, Jan & Bulla, Ingo, 2006. "Stylized facts of financial time series and hidden semi-Markov models," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2192-2209, December.
    2. Gilles Celeux & Jean-Baptiste Durand, 2008. "Selecting hidden Markov model state number with cross-validated likelihood," Computational Statistics, Springer, vol. 23(4), pages 541-564, October.
    3. Langrock, R. & Zucchini, W., 2011. "Hidden Markov models with arbitrary state dwell-time distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 715-724, January.
    4. Jan Bulla & Andreas Berzel, 2008. "Computational issues in parameter estimation for stationary hidden Markov models," Computational Statistics, Springer, vol. 23(1), pages 1-18, January.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. repec:bla:jorssc:v:66:y:2017:i:4:p:691-715 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:58:y:2013:i:c:p:27-44. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.