IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Bayes estimation for the Marshall–Olkin bivariate Weibull distribution

  • Kundu, Debasis
  • Gupta, Arjun K.
Registered author(s):

    In this paper, we consider the Bayesian analysis of the Marshall–Olkin bivariate Weibull distribution. It is a singular distribution whose marginals are Weibull distributions. This is a generalization of the Marshall–Olkin bivariate exponential distribution. It is well known that the maximum likelihood estimators of the unknown parameters do not always exist. The Bayes estimators are obtained with respect to the squared error loss function and the prior distributions allow for prior dependence among the components of the parameter vector. If the shape parameter is known, the Bayes estimators of the unknown parameters can be obtained in explicit forms under the assumptions of independent priors. If the shape parameter is unknown, the Bayes estimators cannot be obtained in explicit forms. We propose to use the importance sampling method to compute the Bayes estimators and also to construct associated credible intervals of the unknown parameters. The analysis of one data set is performed for illustrative purposes. Finally we indicate the analysis of data sets obtained from series and parallel systems.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312002423
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 57 (2013)
    Issue (Month): 1 ()
    Pages: 271-281

    as
    in new window

    Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:271-281
    Contact details of provider: Web page: http://www.elsevier.com/locate/csda

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. G. Heinrich & U. Jensen, 1995. "Parameter estimation for a bivariate lifetime distribution in reliability with multivariate extensions," Metrika, Springer, vol. 42(1), pages 49-65, December.
    2. Kundu, Debasis & Dey, Arabin Kumar, 2009. "Estimating the parameters of the Marshall-Olkin bivariate Weibull distribution by EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 956-965, February.
    3. Dimitris Karlis, 2003. "ML estimation for multivariate shock models via an EM algorithm," Annals of the Institute of Statistical Mathematics, Springer, vol. 55(4), pages 817-830, December.
    4. Patra, Kaushik & Dey, Dipak K., 1999. "A multivariate mixture of Weibull distributions in reliability modeling," Statistics & Probability Letters, Elsevier, vol. 45(3), pages 225-235, November.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:271-281. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.