IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v57y2013i1p233-245.html
   My bibliography  Save this article

A hierarchical Bayesian approach for the analysis of longitudinal count data with overdispersion: A simulation study

Author

Listed:
  • Aregay, Mehreteab
  • Shkedy, Ziv
  • Molenberghs, Geert

Abstract

In sets of count data, the sample variance is often considerably larger or smaller than the sample mean, known as a problem of over- or underdispersion. The focus is on hierarchical Bayesian modeling of such longitudinal count data. Two different models are considered. The first one assumes a Poisson distribution for the count data and includes a subject-specific intercept, which is assumed to follow a normal distribution, to account for subject heterogeneity. However, such a model does not fully address the potential problem of extra-Poisson dispersion. The second model, therefore, includes also random subject and time dependent parameters, assumed to be gamma distributed for reasons of conjugacy. To compare the performance of the two models, a simulation study is conducted in which the mean squared error, relative bias, and variance of the posterior means are compared.

Suggested Citation

  • Aregay, Mehreteab & Shkedy, Ziv & Molenberghs, Geert, 2013. "A hierarchical Bayesian approach for the analysis of longitudinal count data with overdispersion: A simulation study," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 233-245.
  • Handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:233-245
    DOI: 10.1016/j.csda.2012.06.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312002617
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iddi, Samuel & Molenberghs, Geert, 2012. "A combined overdispersed and marginalized multilevel model," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1944-1951.
    2. Hinde, John & Demetrio, Clarice G. B., 1998. "Overdispersion: Models and estimation," Computational Statistics & Data Analysis, Elsevier, vol. 27(2), pages 151-170, April.
    3. Pryseley, Assam & Tchonlafi, Clotaire & Verbeke, Geert & Molenberghs, Geert, 2011. "Estimating negative variance components from Gaussian and non-Gaussian data: A mixed models approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1071-1085, February.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:57:y:2013:i:1:p:233-245. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.