IDEAS home Printed from
   My bibliography  Save this article

Approximate repeated-measures shrinkage


  • Brentnall, Adam R.
  • Crowder, Martin J.
  • Hand, David J.


A general method is formalised for the problem of making predictions for a fixed group of individual units, following a sequence of repeated measures on each. A review of some related work is undertaken and, using some of its terminology, the approach might be described as approximate non-parametric empirical Bayes prediction. It is contended that the method may often produce predictions that are, in practice, comparable or not much worse than more sophisticated methods, but sometimes for a smaller computational cost. Two examples are used to demonstrate the approach, exploring the prediction of baseball averages and spatial-temporal rainfall. The method performs favourably in both examples in comparison with James-Stein, empirical Bayes and other predictions; it also provides a relatively simple and computationally feasible way of determining whether it is worth modelling between-individual variability.

Suggested Citation

  • Brentnall, Adam R. & Crowder, Martin J. & Hand, David J., 2011. "Approximate repeated-measures shrinkage," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1150-1159, February.
  • Handle: RePEc:eee:csdana:v:55:y:2011:i:2:p:1150-1159

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. An, Lihua & Nkurunziza, Sévérien & Fung, Karen Y. & Krewski, Daniel & Luginaah, Isaac, 2009. "Shrinkage estimation in general linear models," Computational Statistics & Data Analysis, Elsevier, vol. 53(7), pages 2537-2549, May.
    2. Adam R. Brentnall & Martin J. Crowder & David J. Hand, 2008. "A statistical model for the temporal pattern of individual automated teller machine withdrawals," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(1), pages 43-59.
    3. Yong Wang, 2007. "On fast computation of the non-parametric maximum likelihood estimate of a mixing distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 185-198.
    4. Laird, Nan M. & Louis, Thomas A., 1991. "Smoothing the non-parametric estimate of a prior distribution by roughening : A computational study," Computational Statistics & Data Analysis, Elsevier, vol. 12(1), pages 27-37, August.
    5. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    6. Brian S. Caffo & Wolfgang Jank & Galin L. Jones, 2005. "Ascent-based Monte Carlo expectation- maximization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 235-251.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:55:y:2011:i:2:p:1150-1159. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.