IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v96y2015icp190-195.html
   My bibliography  Save this article

Convergence of the EM algorithm for continuous mixing distributions

Author

Listed:
  • Chung, Yeojin
  • Lindsay, Bruce G.

Abstract

Beyond the expectation–maximization (EM) algorithm for vector parameters, the EM for an unknown distribution function is often used in mixture models, density estimation, and signal recovery problems. We prove the convergence of the EM in functional spaces and show the EM likelihoods in this space converge to the global maximum.

Suggested Citation

  • Chung, Yeojin & Lindsay, Bruce G., 2015. "Convergence of the EM algorithm for continuous mixing distributions," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 190-195.
  • Handle: RePEc:eee:stapro:v:96:y:2015:i:c:p:190-195
    DOI: 10.1016/j.spl.2014.09.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214003411
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.09.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laird, Nan M. & Louis, Thomas A., 1991. "Smoothing the non-parametric estimate of a prior distribution by roughening : A computational study," Computational Statistics & Data Analysis, Elsevier, vol. 12(1), pages 27-37, August.
    2. Yong Wang, 2007. "On fast computation of the non‐parametric maximum likelihood estimate of a mixing distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 185-198, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brentnall, Adam R. & Crowder, Martin J. & Hand, David J., 2011. "Approximate repeated-measures shrinkage," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1150-1159, February.
    2. Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
    3. Balabdaoui, Fadoua & Kulagina, Yulia, 2020. "Completely monotone distributions: Mixing, approximation and estimation of number of species," Computational Statistics & Data Analysis, Elsevier, vol. 150(C).
    4. Paddock, Susan M. & Ridgeway, Greg & Lin, Rongheng & Louis, Thomas A., 2006. "Flexible distributions for triple-goal estimates in two-stage hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3243-3262, July.
    5. Wang, Yong, 2008. "Dimension-reduced nonparametric maximum likelihood computation for interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2388-2402, January.
    6. Chee, Chew-Seng, 2017. "A mixture model-based nonparametric approach to estimating a count distribution," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 34-44.
    7. Xiang, Sijia & Yao, Weixin & Seo, Byungtae, 2016. "Semiparametric mixture: Continuous scale mixture approach," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 413-425.
    8. Wang, Yong, 2010. "Fisher scoring: An interpolation family and its Monte Carlo implementations," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1744-1755, July.
    9. Tzougas, George & Karlis, Dimitris & Frangos, Nicholas, 2017. "Confidence intervals of the premiums of optimal Bonus Malus Systems," LSE Research Online Documents on Economics 70926, London School of Economics and Political Science, LSE Library.
    10. Chee, Chew-Seng & Seo, Byungtae, 2020. "Semiparametric estimation for linear regression with symmetric errors," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    11. Pan, Wei & Louis, Thomas A., 1999. "Two semi-parametric empirical Bayes estimators," Computational Statistics & Data Analysis, Elsevier, vol. 30(2), pages 185-196, April.
    12. Goutis, Constantinos, 1996. "Nonparametric estimation of a mixing density via the kernel method," DES - Working Papers. Statistics and Econometrics. WS 10437, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Seo, Byungtae, 2017. "The doubly smoothed maximum likelihood estimation for location-shifted semiparametric mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 27-39.
    14. Xu, Danli & Wang, Yong, 2023. "Density estimation for spherical data using nonparametric mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 182(C).
    15. Chee, Chew-Seng & Wang, Yong, 2016. "Nonparametric estimation of species richness using discrete k-monotone distributions," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 107-118.
    16. Ryan Martin, 2021. "A Survey of Nonparametric Mixing Density Estimation via the Predictive Recursion Algorithm," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 97-121, May.
    17. M. M. Shoukri & M. Attanasio & J. M. Sargeant, 1998. "Parametric versus semi-parametric models for the analysis of correlated survival data: A case study in veterinary epidemiology," Journal of Applied Statistics, Taylor & Francis Journals, vol. 25(3), pages 357-374.
    18. Zhiyue Huang & Paul Marriott, 2016. "Parameterizing mixture models with generalized moments," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(2), pages 269-297, April.
    19. Chee, Chew-Seng & Wang, Yong, 2013. "Minimum quadratic distance density estimation using nonparametric mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 1-16.
    20. Chee, Chew-Seng & Wang, Yong, 2014. "Least squares estimation of a k-monotone density function," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 209-216.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:96:y:2015:i:c:p:190-195. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.