IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v54y2010i12p3212-3226.html
   My bibliography  Save this article

Outlier detection and least trimmed squares approximation using semi-definite programming

Author

Listed:
  • Nguyen, T.D.
  • Welsch, R.

Abstract

Robust linear regression is one of the most popular problems in the robust statistics community. It is often conducted via least trimmed squares, which minimizes the sum of the k smallest squared residuals. Least trimmed squares has desirable properties and forms the basis on which several recent robust methods are built, but is very computationally expensive due to its combinatorial nature. It is proven that the least trimmed squares problem is equivalent to a concave minimization problem under a simple linear constraint set. The "maximum trimmed squares", an "almost complementary" problem which maximizes the sum of the q smallest squared residuals, in direct pursuit of the set of outliers rather than the set of clean points, is introduced. Maximum trimmed squares (MTS) can be formulated as a semi-definite programming problem, which can be solved efficiently in polynomial time using interior point methods. In addition, under reasonable assumptions, the maximum trimmed squares problem is guaranteed to identify outliers, no mater how extreme they are.

Suggested Citation

  • Nguyen, T.D. & Welsch, R., 2010. "Outlier detection and least trimmed squares approximation using semi-definite programming," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3212-3226, December.
  • Handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3212-3226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(09)00367-3
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Romy Shioda, 2007. "Classification and Regression via Integer Optimization," Operations Research, INFORMS, vol. 55(2), pages 252-271, April.
    2. Agullo, Jose, 2001. "New algorithms for computing the least trimmed squares regression estimator," Computational Statistics & Data Analysis, Elsevier, vol. 36(4), pages 425-439, June.
    3. Hawkins, Douglas M. & Olive, David J., 1999. "Improved feasible solution algorithms for high breakdown estimation," Computational Statistics & Data Analysis, Elsevier, vol. 30(1), pages 1-11, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Flores, Salvador, 2015. "SOCP relaxation bounds for the optimal subset selection problem applied to robust linear regression," European Journal of Operational Research, Elsevier, vol. 246(1), pages 44-50.
    2. Roozbeh, Mahdi, 2016. "Robust ridge estimator in restricted semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 127-144.
    3. A.A.M. Nurunnabi & Ali S. Hadi & A.H.M.R. Imon, 2014. "Procedures for the identification of multiple influential observations in linear regression," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1315-1331, June.
    4. Waleed B. Altukhaes & Mahdi Roozbeh & Nur A. Mohamed, 2024. "Robust Liu Estimator Used to Combat Some Challenges in Partially Linear Regression Model by Improving LTS Algorithm Using Semidefinite Programming," Mathematics, MDPI, vol. 12(17), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nunkesser, Robin & Morell, Oliver, 2010. "An evolutionary algorithm for robust regression," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3242-3248, December.
    2. L. Pitsoulis & G. Zioutas, 2010. "A fast algorithm for robust regression with penalised trimmed squares," Computational Statistics, Springer, vol. 25(4), pages 663-689, December.
    3. J. L. Alfaro & J. Fco. Ortega, 2009. "A comparison of robust alternatives to Hotelling's T2 control chart," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(12), pages 1385-1396.
    4. Vanessa Berenguer-Rico & Søren Johansen & Bent Nielsen, 2019. "Models where the Least Trimmed Squares and Least Median of Squares estimators are maximum likelihood," CREATES Research Papers 2019-15, Department of Economics and Business Economics, Aarhus University.
    5. Pokojovy, Michael & Jobe, J. Marcus, 2022. "A robust deterministic affine-equivariant algorithm for multivariate location and scatter," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    6. Young Woong Park & Yan Jiang & Diego Klabjan & Loren Williams, 2017. "Algorithms for Generalized Clusterwise Linear Regression," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 301-317, May.
    7. Brandner, Hubertus & Lessmann, Stefan & Voß, Stefan, 2013. "A memetic approach to construct transductive discrete support vector machines," European Journal of Operational Research, Elsevier, vol. 230(3), pages 581-595.
    8. Araújo, Paulo H. M. & Campêlo, Manoel & Corrêa, Ricardo C. & Labbé, Martine, 2024. "Integer programming models and polyhedral study for the geodesic classification problem on graphs," European Journal of Operational Research, Elsevier, vol. 314(3), pages 894-911.
    9. Gambella, Claudio & Ghaddar, Bissan & Naoum-Sawaya, Joe, 2021. "Optimization problems for machine learning: A survey," European Journal of Operational Research, Elsevier, vol. 290(3), pages 807-828.
    10. Selin Ahipaşaoğlu, 2015. "Fast algorithms for the minimum volume estimator," Journal of Global Optimization, Springer, vol. 62(2), pages 351-370, June.
    11. Laura Palagi, 2017. "Global Optimization issues in Supervised Learning. An overview," DIAG Technical Reports 2017-11, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    12. Nunkesser, Robin & Morell, Oliver, 2008. "Evolutionary algorithms for robust methods," Technical Reports 2008,29, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    13. Ranganai, Edmore, 2016. "Quality of fit measurement in regression quantiles: An elemental set method approach," Statistics & Probability Letters, Elsevier, vol. 111(C), pages 18-25.
    14. Hardin, Johanna & Rocke, David M., 2004. "Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator," Computational Statistics & Data Analysis, Elsevier, vol. 44(4), pages 625-638, January.
    15. Olive, David J., 2004. "A resistant estimator of multivariate location and dispersion," Computational Statistics & Data Analysis, Elsevier, vol. 46(1), pages 93-102, May.
    16. Flores, Salvador, 2010. "On the efficient computation of robust regression estimators," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3044-3056, December.
    17. Steffen Rebennack & Vitaliy Krasko, 2020. "Piecewise Linear Function Fitting via Mixed-Integer Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 507-530, April.
    18. Benati, Stefano & Puerto, Justo & Rodríguez-Chía, Antonio M., 2017. "Clustering data that are graph connected," European Journal of Operational Research, Elsevier, vol. 261(1), pages 43-53.
    19. Emilio Carrizosa & Vanesa Guerrero & Dolores Romero Morales, 2023. "On mathematical optimization for clustering categories in contingency tables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 407-429, June.
    20. Lingxun Kong & Christos T. Maravelias, 2020. "On the Derivation of Continuous Piecewise Linear Approximating Functions," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 531-546, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:54:y:2010:i:12:p:3212-3226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.