IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2008i2p255-271.html
   My bibliography  Save this article

An algorithm for robust linear estimation with grouped data

Author

Listed:
  • Rivero, Carlos
  • Valdes, Teofilo

Abstract

An algorithm which is valid to estimate the parameters of linear models under several robust conditions is presented. With respect to the robust conditions, firstly, the dependent variables may be either non-grouped or grouped. Secondly, the distribution of the errors may vary within the wide class of the strongly unimodal distributions, either symmetrical or non-symmetrical. Finally, the variance of the errors is unknown. Under these circumstances the algorithm is not only capable of estimating the parameters (slopes and error variance) of the linear model, but also the asymptotic covariance matrix of the linear parameters. This opens the possibility of making inferences in terms of either multiple confidence regions or hypothesis testing.

Suggested Citation

  • Rivero, Carlos & Valdes, Teofilo, 2008. "An algorithm for robust linear estimation with grouped data," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 255-271, December.
  • Handle: RePEc:eee:csdana:v:53:y:2008:i:2:p:255-271
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00334-4
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An, Mark Yuying, 1998. "Logconcavity versus Logconvexity: A Complete Characterization," Journal of Economic Theory, Elsevier, vol. 80(2), pages 350-369, June.
    2. Carlos Rivero & Teófilo Valdés, 2004. "Mean-Based Iterative Procedures in Linear Models with General Errors and Grouped Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 31(3), pages 469-486.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blanco-Fernández, Angela & Corral, Norberto & González-Rodríguez, Gil, 2011. "Estimation of a flexible simple linear model for interval data based on set arithmetic," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2568-2578, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2008:i:2:p:255-271. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.