IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2008i1p38-60.html
   My bibliography  Save this article

Bayesian mixture of autoregressive models

Author

Listed:
  • Lau, John W.
  • So, Mike K.P.

Abstract

An infinite mixture of autoregressive models is developed. The unknown parameters in the mixture autoregressive model follow a mixture distribution, which is governed by a Dirichlet process prior. One main feature of our approach is the generalization of a finite mixture model by having the number of components unspecified. A Bayesian sampling scheme based on a weighted Chinese restaurant process is proposed to generate partitions of observations. Using the partitions, Bayesian prediction, while accounting for possible model uncertainty, determining the most probable number of mixture components, clustering of time series and outlier detection in time series, can be done. Numerical results from simulated and real data are presented to illustrate the methodology.

Suggested Citation

  • Lau, John W. & So, Mike K.P., 2008. "Bayesian mixture of autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 38-60, September.
  • Handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:38-60
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00298-3
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter J. Green, 2001. "Modelling Heterogeneity With and Without the Dirichlet Process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(2), pages 355-375.
    2. C. S. Wong & W. K. Li, 2000. "On a mixture autoregressive model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 95-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    2. Gonçalves Mazzeu, Joao Henrique & Ruiz, Esther & Veiga, Helena, 2015. "Model uncertainty and the forecast accuracy of ARMA models: A survey," DES - Working Papers. Statistics and Econometrics. WS ws1508, Universidad Carlos III de Madrid. Departamento de Estadística.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:38-60. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.