IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2008i1p164-175.html
   My bibliography  Save this article

Selection of components and degrees of smoothing via lasso in high dimensional nonparametric additive models

Author

Listed:
  • Zheng, Shurong

Abstract

This paper proposes a procedure for selecting components and degrees of smoothing in high dimensional nonparametric additive models. In the procedure, different components have different penalties, and all the smoothing parameters in one component have the same penalties. The idea is similar to, but in fact different from, Wang et al.'s [Wang, H., Li, G.D., Tsai, C.L., 2007. Regression coefficient and autoregressive order shrinkage and selection via the lasso. Journal of the Royal Statistical Society, Series B 69, 63-78] modified lasso, which requires different penalties for different parameters. The procedure obtains the sequence of components according to the importance of these components by Efron et al.'s [Efron, B., Hastie, T., Johnstone, I., Tibshirani, R., 2004. Least angle regression. Annals of Statistics 32, 407-489] LARS. CV or BIC selector can be used to select the tuning parameters in the procedure, where some asymptotic properties are proved. Some simulation results and two examples are used to illustrate the procedure.

Suggested Citation

  • Zheng, Shurong, 2008. "Selection of components and degrees of smoothing via lasso in high dimensional nonparametric additive models," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 164-175, September.
  • Handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:164-175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00335-6
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hansheng Wang & Guodong Li & Chih-Ling Tsai, 2007. "Regression coefficient and autoregressive order shrinkage and selection via the lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(1), pages 63-78.
    2. Ferraty, F. & Vieu, P., 2003. "Curves discrimination: a nonparametric functional approach," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 161-173, October.
    3. Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
    4. Wang, Hansheng & Leng, Chenlei, 2007. "Unified LASSO Estimation by Least Squares Approximation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1039-1048, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Uña Álvarez, Jacobo & Roca Pardiñas, Javier, 2009. "Additive models in censored regression," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3490-3501, July.
    2. Umberto Amato & Anestis Antoniadis & Italia De Feis, 2016. "Additive model selection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(4), pages 519-564, November.
    3. Boj, Eva & Delicado, Pedro & Fortiana, Josep, 2010. "Distance-based local linear regression for functional predictors," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 429-437, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2008:i:1:p:164-175. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.