IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v42y2003i3p279-297.html
   My bibliography  Save this article

Improved frequency selective filters

Author

Listed:
  • Pollock, D. S. G.

Abstract

This paper gives an account of some techniques for designing recursive frequency-selective filters which can be applied to data sequences of limited duration which may be nonstationary. The designs are based on the Wiener-Kolmogorov theory of signal extraction which employs a statistical model of the processes generating the data. The statistical model may be regarded as an heuristic device which is designed with a view to ensuring that the resulting signal-extraction filters have certain preconceived properties.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Pollock, D. S. G., 2003. "Improved frequency selective filters," Computational Statistics & Data Analysis, Elsevier, vol. 42(3), pages 279-297, March.
  • Handle: RePEc:eee:csdana:v:42:y:2003:i:3:p:279-297
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(02)00228-1
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Charles Nelson & Eric Zivot, 2000. "Why are Beveridge-Nelson and Unobserved-Component Decompositions of GDP so Different?," Econometric Society World Congress 2000 Contributed Papers 0692, Econometric Society.
    2. Siem Jan Koopman & Neil Shephard & Jurgen A. Doornik, 1999. "Statistical algorithms for models in state space using SsfPack 2.2," Econometrics Journal, Royal Economic Society, vol. 2(1), pages 107-160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mastromarco, Camilla & Woitek, Ulrich, 2007. "Regional business cycles in Italy," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 907-918, October.
    2. Blöchl, Andreas, 2014. "Penalized Splines as Frequency Selective Filters - Reducing the Excess Variability at the Margins," Discussion Papers in Economics 20687, University of Munich, Department of Economics.
    3. Maravall, A. & del Rio, A., 2007. "Temporal aggregation, systematic sampling, and the Hodrick-Prescott filter," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 975-998, October.
    4. Tatiana Cesaroni, 2011. "The cyclical behavior of the Italian business survey data," Empirical Economics, Springer, vol. 41(3), pages 747-768, December.
    5. Kaiser, Regina & Maravall, Agustin, 2005. "Combining filter design with model-based filtering (with an application to business-cycle estimation)," International Journal of Forecasting, Elsevier, vol. 21(4), pages 691-710.
    6. Pollock, D.S.G., 2006. "Econometric methods of signal extraction," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2268-2292, May.
    7. Pollock, D. S. G., 2003. "Recursive estimation in econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 37-75, October.
    8. Ombao, Hernando & Ringo Ho, Moon-ho, 2006. "Time-dependent frequency domain principal components analysis of multichannel non-stationary signals," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2339-2360, May.
    9. Tommaso Proietti, 2012. "Seasonality, Forecast Extensions And Business Cycle Uncertainty," Journal of Economic Surveys, Wiley Blackwell, vol. 26(4), pages 555-569, September.
    10. Proietti, Tommaso, 2007. "Signal extraction and filtering by linear semiparametric methods," Computational Statistics & Data Analysis, Elsevier, vol. 52(2), pages 935-958, October.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:42:y:2003:i:3:p:279-297. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/csda .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.