Author
Listed:
- Wendling, Alexandre
- Galiez, Clovis
Abstract
The analysis of binary outcomes and features, such as the effect of vaccination on health, often rely on 2 × 2 contingency tables. However, confounding factors such as age or gender call for stratified analysis, by creating sub-tables, which is common in bioscience, epidemiological, and social research, as well as in meta-analyses. Traditional methods for testing associations across strata, such as the Cochran-Mantel-Haenszel (CMH) test, struggle with small sample sizes and heterogeneity of effects between strata. Exact tests can address these issues, but are computationally expensive. To address these challenges, the Gamma Approximation of Stratified Truncated Exact (GASTE) test is proposed. It approximates the exact statistic of the combination of p-values with discrete support, leveraging the gamma distribution to approximate the distribution of the test statistic under stratification, providing fast and accurate p-value calculations, even when effects vary between strata. The GASTE method maintains high statistical power and low type I error rates, outperforming traditional methods by offering more sensitive and reliable detection. It is computationally efficient and broadens the applicability of exact tests in research fields with stratified binary data. The GASTE method is demonstrated through two applications: an ecological study of Alpine plant associations and a 1973 case study on admissions at the University of California, Berkeley. The GASTE method offers substantial improvements over traditional approaches. The GASTE method is available as an open-source package at https://github.com/AlexandreWen/gaste. A Python package is available on PyPI at https://pypi.org/project/gaste-test/
Suggested Citation
Wendling, Alexandre & Galiez, Clovis, 2026.
"Gamma approximation of stratified truncated exact test (GASTE-test) & application,"
Computational Statistics & Data Analysis, Elsevier, vol. 214(C).
Handle:
RePEc:eee:csdana:v:214:y:2026:i:c:s0167947325001537
DOI: 10.1016/j.csda.2025.108277
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:214:y:2026:i:c:s0167947325001537. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.